Xu Shenchun, Liu Zhongxian, Wu Chengqing. Field blast test and numerical simulation of ultra-high performance steel fiber reinforced concrete-filled double skin steel tube column under blast loading[J]. Explosion And Shock Waves, 2017, 37(4): 649-660. doi: 10.11883/1001-1455(2017)04-0649-12
Citation: Xu Shenchun, Liu Zhongxian, Wu Chengqing. Field blast test and numerical simulation of ultra-high performance steel fiber reinforced concrete-filled double skin steel tube column under blast loading[J]. Explosion And Shock Waves, 2017, 37(4): 649-660. doi: 10.11883/1001-1455(2017)04-0649-12

Field blast test and numerical simulation of ultra-high performance steel fiber reinforced concrete-filled double skin steel tube column under blast loading

doi: 10.11883/1001-1455(2017)04-0649-12
  • Received Date: 2015-12-28
  • Rev Recd Date: 2016-05-15
  • Publish Date: 2017-07-25
  • A field blast test including 6 specimens was conducted to investigate the effect of the axial compression ratio, the scaled distance, the hollow ratio and the shape of the facing blasting side on the dynamic response of ultra-high performance steel fiber reinforced concrete-filled double skin steel tube columns (UHPSFRCFDST). Then a three dimensional finite element model (3D FEM) was built using the LS-DYNA software to analyse the dynamic response and damage mechanism of UHPSFRCFDST columns under blast loading, and it was validated by comparison of simulation with blast testing results. Based on this model, the effect of such key parameters as the axial compression ratio, the hollow ratio, the steel ration, the thickness and strength of the inner or outer steel tube, on the blast-resisting performance of UHPSFRCFDST columns was presented. The results indicate that the 3D FEM can accurately describe the dynamic response of UHPSFRCFDST columns under blast loading. The blast-resisting performance of UHPSFRCFDST columns can be improved by increasing the axial compression ratio in a certain range, whereas the damage of the specimens will aggravate when this ratio goes above a critical value. Moreover, the blast-resisting performance of UHPSFRCFDST columns can be enhanced by reducing the hollow ratio or the diameter to thickness ratio of the inner and outer steel tube, and the effect can also be achieved by increasing the steel proportion or the strength of the outer steel tube. However, the strength of the inner steel tube has little effect on the blast-resisting performance of UHPSFRCFDST columns.
  • [1]
    钟善桐.钢管混凝土结构[M].3版.北京:清华大学出版社, 2003.
    [2]
    蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社, 2007.
    [3]
    韩林海.钢管混凝土结构——理论与实践[M].北京:科学出版社, 2004.
    [4]
    黄宏.中空夹层钢管混凝土压弯构件的力学性能研究[D].福州: 福州大学, 2006.
    [5]
    孙珊珊.爆炸荷载下钢管混凝土柱抗爆性能研究[D].西安: 长安大学, 2013.
    [6]
    崔莹.爆炸荷载下复式空心钢管混凝土柱的动态响应及损伤评估[D].西安: 长安大学, 2013.
    [7]
    李国强, 瞿海雁, 杨涛春, 等.钢管混凝土柱抗爆性能试验研究[J].建筑结构学报, 2013, 34(12):69-76. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201312009

    Li Guoqiang, Qu Haiyan, Yang Taochun, et al. Experimental study of concrete-filled steel tubular columns under blast loading[J]. Journal of Building Structures, 2013, 34(12):69-76. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201312009
    [8]
    Zhang F R, Wu C Q, Wang H W, et al. Numerical simulation of concrete filled steel tube columns against blast loads[J]. Thin-Walled Structures, 2015, 92:82-92. doi: 10.1016/j.tws.2015.02.020
    [9]
    Jama H H, Bambach M R, Nurick G N, et al. Numerical modelling of square tubular steel beams subjected to transverse blast loads[J]. Thin-Walled Structures, 2009, 47(12):1523-1534. doi: 10.1016/j.tws.2009.06.004
    [10]
    余同希, 邱信明.冲击动力学[M].北京:清华大学出版社, 2011.
    [11]
    Livermore Software Technology Corporation. LS-DYNA User's Manual, Version971[M]. Livermore, CA: Livermore Software Technology Corporation, 2015.
    [12]
    李忠献, 师燕超, 史祥生.爆炸荷载作用下钢筋混凝土板破坏评定方法[J].建筑结构学报, 2009, 30(6):60-66. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb200906008

    Li Zhongxian, Shi Yanchao, Shi Xiangsheng. Damage analysis and assessment of RC slabs under blast load[J]. Journal of Building Structures, 2009, 30(6):60-66. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb200906008
    [13]
    师燕超, 李忠献.爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式[J].建筑结构学报, 2008, 29(4):112-117. doi: 10.3321/j.issn:1000-6869.2008.04.015

    Shi Yanchao, Li Zhongxian. Dynamic responses and failure modes of RC columns under blast loading[J]. Journal of Building Structures, 2008, 29(4):112-117. doi: 10.3321/j.issn:1000-6869.2008.04.015
    [14]
    Bauschinger J. On the change of position of the elastic limit of iron and steel under cyclic variations of stress[J]. Mitt Mech Tech Lab München, 1886(13):101-115.
    [15]
    Malvar L J, Crawford J E, Wesevich J W, et al. A plasticity concrete material model for DYNA3D[J]. International Journal of Impact Engineering, 1997, 19(9/10):847-873. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC025950745
    [16]
    Tu Z, Lu Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations[J]. International Journal of Impact Engineering, 2009, 36(1):132-146. doi: 10.1016/j.ijimpeng.2007.12.010
    [17]
    Malvar L J, Crawfor J E, Morrill K B. K&C concrete material model release Ⅲ: Automated generation of material model input: TR-99-24-B1[R]. Glendale: Karagozian and Case Structural Engineers, 2009.
    [18]
    Gopalaratnam V S, Shah S P. Properties of steel fiber reinforced concrete subjected to impact loading[J]. Journal of the American Concrete Institute, 1986, 83(1):117-126. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/1750
    [19]
    Wang Z L, Liu Y S, Shen R F. Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression[J]. Construction and Building Materials, 2008, 22(5):811-819. doi: 10.1016/j.conbuildmat.2007.01.005
    [20]
    赵均海, 郭红香, 魏雪英.圆中空夹层钢管混凝土柱承载力研究[J].建筑科学与工程学报, 2005, 22(1):50-54. doi: 10.3321/j.issn:1673-2049.2005.01.007

    Zhao Junhai, Guo Hongxiang, Wei Xueying. Research on bearing capacity of concrete filled double skin steel tubes column[J]. Journal of Architecture and Civil Engineering, 2005, 22(1):50-54. doi: 10.3321/j.issn:1673-2049.2005.01.007
  • Cited by

    Periodical cited type(7)

    1. 吕辰旭,闫秋实. 近爆荷载作用下PC柱动力响应及破坏模式数值模拟研究. 混凝土. 2021(12): 1-6 .
    2. 闫秋实,陈天一,廖维张. 近爆作用下钢筋混凝土柱数值分析加载方法对比. 北京工业大学学报. 2020(02): 154-161 .
    3. 邓旭辉,王达锋. 近爆作用下中空夹层超高性能钢管混凝土柱的抗爆性能. 高压物理学报. 2020(06): 151-164 .
    4. 孙大威,徐迎,王鹏,孔新立,赵成杰,陈艺顺. CFFT柱在爆炸荷载作用下动力响应数值模拟. 防护工程. 2020(06): 18-23 .
    5. 张文华,刘鹏宇,吕毓静. 超高性能混凝土动态力学性能研究进展. 材料导报. 2019(19): 3257-3271 .
    6. 齐宝欣,阎石,武行. 建筑结构抗爆设防性能目标研究. 爆破. 2018(03): 135-140 .
    7. 周子欣,郭志昆,陈万祥,罗立胜. HFR-LWC抗冲爆炸性能研究进展. 科技资讯. 2018(23): 84-87 .

    Other cited types(16)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(13)

    Article Metrics

    Article views (4115) PDF downloads(241) Cited by(23)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return