QIN Yi, CHEN Xiaowei, HUANG Wei. Overpressure prediction of combustible gas explosion in confined space[J]. Explosion And Shock Waves, 2020, 40(3): 032202. doi: 10.11883/bzycj-2019-0175
Citation: Kou Jianfeng, Xu Fei, Ji Sanhong, Zhang Xiaoyu. Influence of bird yaw/pitch orientation on bird-strike resistance of aircraft structures[J]. Explosion And Shock Waves, 2017, 37(5): 937-944. doi: 10.11883/1001-1455(2017)05-0937-08

Influence of bird yaw/pitch orientation on bird-strike resistance of aircraft structures

doi: 10.11883/1001-1455(2017)05-0937-08
  • Received Date: 2016-01-22
  • Rev Recd Date: 2016-05-11
  • Publish Date: 2017-09-25
  • There have been numerous bird-strike accidents in which substantial damage to the airframe occurred even though the striking force involved did not reach the energy standard currently required, showing that only taking mass and velocity into account in bird-strike prevention cannot guarantee airframe safety. In order to find out the effect of the bird yaw/pitch orientation on the safety of different aircraft structures, the dynamic responses on the panel, the radome, and the plane wing's leading edge were investigated. The results show that the bird-strike resistance of the structure is significantly affected by the bird's yaw/pitch orientation, and different structural characteristics lead to different dynamic responses. The greater the attitude angle, the more energy absorbed for the energy-absorbing structure, and accordingly the safer the protected structure; for the load-bearing structure, the greater the attitude and the larger the high stress area on the structure, the more vulnerable the structure. Therefore, in the evaluation of aircraft structures' bird-strike resistance capability, apart from doing the bird-strike experiment, it is also necessary to investigate different responses of various bird yaw/pitch orientations to the hazardous parts of aircraft structures through numerical simulation.
  • [1]
    Barber J P, Taylor H R, Wilbeck J S. Characterization of bird impacts on a rigid plate: Part 1[R]. AFFDL-TR-75-5, 1975.
    [2]
    Barber J P, Taylor H R, Wilbeck J S. Bird impact forces and pressures on rigid and compliant targets[R]. AFFDL-TR-77-60, 1978.
    [3]
    Wilbeck J S. Impact behavior of low strength projectiles[R]. AFML-TR-77-134, 1977. https://www.researchgate.net/publication/235048505_Impact_Behavior_of_Low_Strength_Projectiles
    [4]
    Lavoiea M A, Gakwaya A, Nejad Ensan M, et al. Bird's substitute tests results and evaluation of available numerical methods[J]. International Journal of Impact Engineering, 2009, 36(10):1276-1287. doi: 10.1016-j.ijimpeng.2009.03.009/
    [5]
    Hedayati R, Sadighi M, Mohammadi-Aghdam M. On the difference of pressure readings from the numerical, experimental and theoretical results in different bird strike studies[J]. Aerospace Science and Technology, 2014, 32(1):260-266. doi: 10.1016/j.ast.2013.10.008
    [6]
    Lavoiea M A, Gakwaya A, Ensan M N, et al. Review of existing numerical methods and validation procedure available for bird strike modeling[C]//International Conference on Computational and Experimental Engineering and Science-2007. 2007: 111-118.
    [7]
    Mccarthy M A, Xiao J R, Mccarthy C T, et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates-Part 2: Modelling of impact with SPH bird model[J]. Applied Composite Materials, 2004, 11(5):317-340. doi: 10.1023/B:ACMA.0000037134.93410.c0
    [8]
    Guidaa M, Marulo F, Meo M, et al. SPH-Lagrangian study of bird impact on leading edge wing[J]. Composite Structures, 2011, 93(3):1060-1071. doi: 10.1016/j.compstruct.2010.10.001
    [9]
    Mccallum S C, Constantinou C. The influence of bird-shape in bird-strike analysis[C]//5th European LS-DYNA users conference. Birmingham, UK, 2005. https://www.dynalook.com/conferences/european-conf-2005/Mccallum.pdf
    [10]
    Meguid S A, Mao R H, Ng T Y. FE analysis of geometry effects of an artificial birdstriking an aeroengine fan blade[J]. International Journal of Impact Engineering, 2008, 35(6):487-498. doi: 10.1016/j.ijimpeng.2007.04.008
    [11]
    刘军, 李玉龙, 石霄鹏, 等.鸟体本构模型参数反演Ⅱ:模型参数反演研究[J].航空学报, 2011, 32(5):812-821. http://d.old.wanfangdata.com.cn/Periodical/hkxb201105005

    Liu Jun, Li Yulong, Shi Xiaopeng, et al. Parameters inversion on bird constitutive model. Part Ⅱ: Study on model parameters inversion[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):812-821. http://d.old.wanfangdata.com.cn/Periodical/hkxb201105005
    [12]
    Nizampatnam L S. Investigation of equation of state models for predicting[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2008.
    [13]
    Sebastian H. Computational methods for bird strike simulations: A review[J]. Computers and Structures, 2011, 89(23):2093-2112. http://d.old.wanfangdata.com.cn/Periodical/fjjs201805006
    [14]
    Reza H, Saeed Z R. A new bird model and the effect of bird geometry in impacts from various orientation[J]. Aerospace Science and Technology, 2013, 28(1):9-20. doi: 10.1016/j.ast.2012.09.002
    [15]
    Federal Aviation Administration. Bird strike requirements for transport category airplanes: Proposed rules[J]. Federal Register, 2015, 80(138):42753-42756.
    [16]
    陈园方, 李玉龙, 刘军, 等.典型前缘结构抗鸟撞性能改进研究[J].航空学报, 2010, 31(9):1781-1787. http://d.old.wanfangdata.com.cn/Periodical/hkxb201009012

    Chen Yuanfang, Li Yulong, Liu Jun, et al. Study of bird strike on an improved leading edge structure[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1781-1787. http://d.old.wanfangdata.com.cn/Periodical/hkxb201009012
  • Cited by

    Periodical cited type(5)

    1. 杨轶民,许晓宁,王永虎. 无人机机翼鸟撞下的气动特性变化数值分析. 湖北工业职业技术学院学报. 2022(04): 79-84 .
    2. 张永强,贾林. TC4钛合金空心结构风扇叶片的鸟撞动力学响应及损伤失效. 高压物理学报. 2022(05): 77-87 .
    3. 郭鹏,刘志远,张桂昌,Reza Hedayati,张俊红. 鸟撞过程中撞击位置与撞击姿态对风扇叶片损伤影响研究. 振动与冲击. 2021(12): 124-131 .
    4. 张俊红,刘志远,戴胡伟,Reza Hedayati,袁一,张桂昌. 撞击位置与风扇转速对鸟撞过程的影响. 天津大学学报(自然科学与工程技术版). 2020(05): 492-501 .
    5. 郭亚周,刘小川,白春玉,王计真,郭军. 机翼前缘局部填充泡沫铝抗鸟撞特性. 科学技术与工程. 2020(08): 3348-3355 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (4283) PDF downloads(206) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return