Citation: | Guo Zhaoliang, Fan Cheng, Liu Mingtao, Ren Guowu, Tang Tiegang, Liu Cangli. Fracture mode transition in expanding ring and cylindrical shell under electromagnetic and explosive loadings[J]. Explosion And Shock Waves, 2017, 37(6): 1072-1079. doi: 10.11883/1001-1455(2017)06-1072-08 |
[1] |
王礼立.应力波基础[M].2版.北京:国防工业出版社, 2005.
|
[2] |
Grady D.Fragmentation of rings and shells-The legacy of N.F.Mott[M].Berlin:Springer, 2006.
|
[3] |
周风华, 郭丽娜, 王礼立.脆性固体碎裂过程中的最快卸载特性[J].固体力学学报, 2010, 31(3):286-295. http://d.old.wanfangdata.com.cn/Periodical/gtlxxb201003009
Zhou Fenghua, Guo Lina, Wang Lili.The rapidest unloading characteristics in the fragmentation process of brittle solids[J].Chinese Journal of Solid Mechanics, 2010, 31(3):286-295. http://d.old.wanfangdata.com.cn/Periodical/gtlxxb201003009
|
[4] |
汤铁钢, 李庆忠, 孙学林, 等.45钢柱壳膨胀断裂的应变率效应[J].爆炸与冲击, 2006, 26(2):129-133. doi: 10.3321/j.issn:1001-1455.2006.02.006
Tang Tiegang, Li Qingzhong, Sun Xuelin, et al.Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation[J].Explosion and Shock Waves, 2006, 26(2):129-133. doi: 10.3321/j.issn:1001-1455.2006.02.006
|
[5] |
任国武, 郭昭亮, 汤铁钢, 等.高应变率加载下金属柱壳断裂的实验研究[J].兵工学报, 2016, 37(1):77-82. doi: 10.3969/j.issn.1000-1093.2016.01.012
Ren Guowu, Guo Zhaoliang, Tang Tiegang, et al.Experimental research on fracture of metal case under loading at high strain rate[J].Acta Armamentarii, 2016, 37(1):77-82. doi: 10.3969/j.issn.1000-1093.2016.01.012
|
[6] |
Ren Guowu, Guo Zhaoliang, Fan Cheng, et al.Dynamic shear fracture of an explosively-driven metal cylindrical shell[J].International Journal of Impact Engineering, 2016, 95:35-39. doi: 10.1016/j.ijimpeng.2016.04.012
|
[7] |
Zhang H, Ravi-Chandar K.Dynamic fragmentation of ductile materials[J].Journal of Physics D:Applied Physics, 2009, 42(21):214010. doi: 10.1088/0022-3727/42/21/214010
|
[8] |
Zhang H, Ravi-Chandar K.On the dynamics of necking and fragmentation-Ⅰ.Real-time and post-mortem observations in Al 6061-O[J].International Journal of Fracture, 2006, 142:183-217. doi: 10.1007/s10704-006-9024-7
|
[9] |
汤铁钢, 李庆忠, 陈永涛, 等.实现材料高应变率拉伸加载的爆炸膨胀环技术[J].爆炸与冲击, 2009, 29(5):546-549. doi: 10.3321/j.issn:1001-1455.2009.05.017
Tang Tiegang, Li Qingzhong, Chen Yongtao, et al.An improved technique for dynamic tension of metal ring by explosive loading[J].Explosion and Shock Waves, 2009, 29(5):546-549. doi: 10.3321/j.issn:1001-1455.2009.05.017
|
[10] |
桂毓林, 孙承纬, 李强, 等.实现金属环动态拉伸的电磁加载技术研究[J].爆炸与冲击, 2006, 26(6):481-485. doi: 10.3321/j.issn:1001-1455.2006.06.001
Gui Yulin, Sun Chengwei, Li Qiang, et al.Experimental studies on dynamic tension of metal ring by electromagnetic loading[J].Explosion and Shock Waves, 2006, 26(6):481-485. doi: 10.3321/j.issn:1001-1455.2006.06.001
|
[11] |
桂毓林.电磁加载下金属膨胀环的动态断裂与碎裂研究[D].四川绵阳: 中国工程物理研究院, 2007. http://cdmd.cnki.com.cn/Article/CDMD-82818-2008032579.htm
|
[12] |
陈磊, 周风华, 汤铁钢.韧性金属环高速膨胀碎裂过程的有限元模拟[J].力学学报, 2011, 43(5):861-870. http://d.wanfangdata.com.cn/Periodical/lxxb201105010
Chen Lei, Zhou Fenghua, Tang Tiegang.Finite element simulation of the high velocity expansion and fragmentation of ductile metallic rings[J].Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5):861-870. http://d.wanfangdata.com.cn/Periodical/lxxb201105010
|
[1] | ZHANG Xuping, DONG Jinlei, LYU Chao, LUO Binqiang, WANG Guiji, TAN Fuli, ZHAO Jianheng. Mechanical response of NiTi alloys with different initial phase transition temperatures at high strain rates[J]. Explosion And Shock Waves, 2024, 44(5): 053102. doi: 10.11883/bzycj-2023-0257 |
[2] | ZHANG Shiwen, JIN Shan, CHEN Yan, GUO Zhaoliang, DAN Jiakun, LIU Mingtao, TANG Tiegang. Influence of a cushion on dynamic expansion and fracture of an explosively-driven metallic cylinder[J]. Explosion And Shock Waves, 2022, 42(8): 083102. doi: 10.11883/bzycj-2021-0456 |
[3] | LIANG Minzu, LU Fangyun, LI Xiangyu, LIN Yuliang, CHEN Rong. An impact expanding ring experimental technology[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2020-0332 |
[4] | SHEN Fei, WANG Hui, QU Kepeng, ZHANG Gao. Expansion and fracture characteristics of oxygen-free copper tubes with different grain sizes under detonation loading[J]. Explosion And Shock Waves, 2020, 40(2): 022201. doi: 10.11883/bzycj-2019-0063 |
[5] | PAN Hao, WANG Shengtao, WU Zihui, HU Xiaomian. On strength of aluminum under high pressure and high strain rate based on crystal plasticity theory[J]. Explosion And Shock Waves, 2019, 39(2): 023102. doi: 10.11883/bzycj-2018-0084 |
[6] | LIU Yu, XU Zejian, TANG Zhongbin, ZHANG Weiqi, HUANG Fenglei. A high-strain-rate shear testing method based on the DIHPB technique[J]. Explosion And Shock Waves, 2019, 39(10): 104101. doi: 10.11883/bzycj-2018-0301 |
[7] | LI Chenghua, JIANG Zhaoxiu, WANG Beiqiao, ZHANG Zhen, WANG Yonggang. Nonlinear mechanical response of PZT95/5 ferroelectric ceramics under high strain rate loading[J]. Explosion And Shock Waves, 2018, 38(4): 707-715. doi: 10.11883/bzycj-2016-0329 |
[8] | ZHANG Weiqi, XU Zejian, SUN Zhongyue, TONG Yi, HUANG Fenglei. Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates[J]. Explosion And Shock Waves, 2018, 38(5): 1137-1144. doi: 10.11883/bzycj-2017-0107 |
[9] | Li Shunping, Feng Shunshan, Xue Zaiqing, Tu Jian. Mechanical properties of PTFE at high strain rate[J]. Explosion And Shock Waves, 2017, 37(6): 1046-1050. doi: 10.11883/1001-1455(2017)06-1046-05 |
[10] | Zhang Long-hui, Zhang Xiao-qing, Yao Xiao-hu, Zang Shu-guang. Constitutive model of transparent aviation polyurethane at high strain rates[J]. Explosion And Shock Waves, 2015, 35(1): 51-56. doi: 10.11883/1001-1455(2015)01-0051-06 |
[11] | Ren Guo-wu, Guo Zhao-liang, Zhang Shi-wen, Tang Tie-gang, Jin Shan, Hu Hai-bo. Experiment and numerical simulation on expansion deformation and fracture of cylindrical shell[J]. Explosion And Shock Waves, 2015, 35(6): 895-900. doi: 10.11883/1001-1455(2015)06-0895-06 |
[12] | Zheng Yu-xuan, Zhou Feng-hua, Hu Shi-sheng. An SHPB-based experimental technique for dynamic fragmentations of expanding rings[J]. Explosion And Shock Waves, 2014, 34(4): 483-488. doi: 10.11883/1001-1455(2014)04-0483-06 |
[13] | TangTie-gang, LiuCang-li. Ontheconstitutivemodelforoxygen-freehigh-conductivitycopper underhighstrain-ratetension[J]. Explosion And Shock Waves, 2013, 33(6): 581-586. doi: 10.11883/1001-1455(2013)06-0581-06 |
[14] | SUO Tao, DAI Lei, SHI Chun-sen, LI Yu-long, YANG Jian-bo. MechanicalbehaviorsofC/SiCcompositessubjectedtouniaxialcompression athightemperaturesandhighstrainrates[J]. Explosion And Shock Waves, 2012, 32(3): 297-302. doi: 10.11883/1001-1455(2012)03-0297-06 |
[15] | TANG Tie-gang, LI Qing-zhong, CHEN Yong-tao, TONG Hui-feng, LIU Cang-li. Discussionaboutone-dimensionalstresspresume forexplosionexpandingringtes[J]. Explosion And Shock Waves, 2010, 30(6): 577-582. doi: 10.11883/1001-1455(2010)06-0577-06 |
[16] | TANG Tie-gang, GUI Yu-lin, LI Qing-zhong, CHEN Yong-tao, TONG Hui-feng, LIU Cang-li. Adiscussionofdataprocessingtechniquesforexpandingringtest[J]. Explosion And Shock Waves, 2010, 30(5): 505-510. doi: 10.11883/1001-1455(2010)05-0505-06 |
[17] | TANG Tie-gang, LI Qing-zhong, LIU Cang-li, GUI Yu-lin. Sizeeffectsofexpandingringbyexplosiveloading[J]. Explosion And Shock Waves, 2010, 30(1): 39-44. doi: 10.11883/1001-1455(2010)01-0039-06 |
[18] | TANG Tie-gang, LI Qing-zhong, CHEN Yong-tao, GU Yan, LIU Cang-li. An improved technique for dynamic tension of metal ring by explosive loading[J]. Explosion And Shock Waves, 2009, 29(5): 546-549. doi: 10.11883/1001-1455(2009)05-0546-04 |
[19] | WANG Li-li, DONG Xin-long, SUN Zi-jian. Dynamic constitutive behavior of materials at high strain rate taking account of damage evolution[J]. Explosion And Shock Waves, 2006, 26(3): 193-198. doi: 10.11883/1001-1455(2006)03-0193-06 |
[20] | LI Yu-long, SUO Tao, GUO Wei-guo, HU Rui, LI Jin-shan, FU Heng-zhi. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar[J]. Explosion And Shock Waves, 2005, 25(6): 487-492. doi: 10.11883/1001-1455(2005)06-0487-06 |
1. | 徐便,郑宇轩,杨洪升,周风华. 带有幂次内聚断裂模型的韧性碎裂. 兵工学报. 2023(05): 1493-1501 . ![]() | |
2. | 沈飞,王辉,屈可朋,张皋. 不同晶粒度无氧铜管在爆轰加载下的膨胀及断裂特性. 爆炸与冲击. 2020(02): 4-12 . ![]() | |
3. | 李亮亮,沈飞,王辉,屈可朋. 晶粒细化对无氧铜动态力学性能的影响. 兵器材料科学与工程. 2019(01): 22-25 . ![]() | |
4. | 沈飞,王辉,李彪彪,张皋. 拉拔成型无氧铜管在爆轰加载下的膨胀及断裂特性研究. 兵工学报. 2019(08): 1634-1640 . ![]() |