Citation: | Gao Wei, Abe Shuntaro, Rong Jian-zhong, Dobashi Ritsu. Effect of airflow characteristics on flame structure for following lycopodium dust-air mixtures in a long horizontal tube[J]. Explosion And Shock Waves, 2015, 35(3): 372-379. doi: 10.11883/1001-1455-(2015)03-0372-08 |
[1] |
Eckhoff R K. Dust explosions in the process industries[M]. 3rd ed. Boston: Gulf Professional Publishing/Elsevi-er, 2003: 1-156.
|
[2] |
Gao W, Dobashi R, Mogi T, et al. Effects of particle characteristics on flame propagation behavior during organic dust explosions in a half-closed chamber[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(6): 993-999.
|
[3] |
Han O S, Yashima M, Matsuda T, et al. Behavior of flames propagating through lycopodium dust clouds in a vertical duct[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(6): 449-457.
|
[4] |
Proust C. A few fundamental aspects about ignition and flame propagation in dust clouds[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 104-120.
|
[5] |
Wang S F, Pu Y K, Jia F. An experimental study on flame propagation in cornstarch dust clouds[J]. Combustion Science and Technology, 2006, 178(10/11): 1957-1975.
|
[6] |
Dobashi R, Senda K. Detailed analysis of flame propagation during dust explosions by UV band observations[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 149-153.
|
[7] |
Matsuda T. The effect of air velocity on minimum ignition energy for flowing dust-air mixtures in a tube[R]. Research Report of the Research Institute of Industrial Safety, RIIS-RR-86, 1986.
|
[8] |
Matsuda T. Flame propagation characteristics of flowing dust-air mixtures in a tube[R]. Research Report of the Research Institute of Industrial Safety, RIIS-RR-87, 1987.
|
[9] |
Pickles J H. A model for coal dust duct explosions[J]. Combustion and Flame, 1982, 44(1/2/3): 153-168.
|
[10] |
刘晓利, 李鸿志, 叶经方, 等.铝粉-空气混和物的爆轰管研究[J].弹道学报, 1993(2): 76-82.
Liu Xiao-li, Li Hong-zhi, Ye Jing-fang, et al. Detonation tube studies of aluminum powder-air mixture[J]. Journal of Ballistics, 1993(2): 76-82.
|
[11] |
刘晓利, 李鸿志, 郭建国, 等.铝粉-空气混和物燃烧转爆轰(DDT)过程的实验研究[J].爆炸与冲击, 1995, 15(3): 217-228.
Liu Xiao-li, Li Hong-zhi, Guo Jian-guo, et al. An experimental investigation of deflagration to detonation transition(DDT)in aluminum dust-air mixture[J]. Explosion and Shock Waves, 1995, 15(3): 217-228.
|
[12] |
陈志华, 范宝春, 刘庆明, 等.大型管中两相爆炸现象的实验研究[J].流体力学实验与测量, 1998, 12(1): 44-49.
Chen Zhi-hua, Fan Bao-chun, Liu Qing-ming, et al. Experimental study on the phenomenon of two-phase explosion in a large scale tube[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(1): 44-49.
|
[13] |
陈志华, 范宝春, 李鸿志.燃烧管内悬浮铝粉燃烧爆炸过程的研究[J].高压物理学报, 2006, 20(2): 157-162. http://www.cnki.com.cn/Article/CJFDTotal-GYWL200602007.htm
Chen Zhi-hua, Fan Bao-chun, Li Hong-zhi, et al. Investigations on combustion and explosion process of suspended aluminum particles in a large combustion tube[J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 157-162. http://www.cnki.com.cn/Article/CJFDTotal-GYWL200602007.htm
|
[14] |
白春华, Li Y C, Kauffman C W.工业粉尘"二次爆炸"过程研究[J].中国安全科学学报, 1995, 5(1): 6-11.
Bai Chun-hua, Li Y C, Kauffman C W. The explosion behaviour of layered industrial dusts[J]. China Safety Science Journal, 1995, 5(1): 6-11.
|
[15] |
钟圣俊, 邓煦帆.有机粉尘爆炸的数值模拟[J].中国粉体技术, 2000(6): 239-243.
Zhong Sheng-jun, Deng Xu-fan. Simulation of organic dust explosions[J]. China Powder Science and Technology, 2000(6): 239-243.
|
[16] |
薄涛.水平管道爆炸装置中粉尘爆炸特性研究[J].山西化工, 2008, 28(5): 14-16.
Bo Tao. The experimental study of dust explosion in horizontal pipeline type exploder[J]. Shanxi Chemical Industry, 2008, 28(5): 14-16.
|
[17] |
日本粉尘工业技术协会粉尘爆炸委员会编.粉尘爆炸火灾对策[M]. Ohmsha出版局, 2006: 21-55.
|
[18] |
Zhen G, Leuckel W. Determination of dust-dispersion-induced turbulence and its influence on dust explosions[J]. Combustion Science and Technology, 1996, 113(1): 629-639.
|
[19] |
Hinze J O. Turbulence[M]. 2nd ed. Mcgraw-Hill College, 1975: 27-63.
|
[20] |
Gao W, Mogi T, Dobashi R. Effects of particle thermal characteristics on flame structures during dust explosions of three long-chain monobasic alcohols in an open-space chamber[J]. Fuel, 2013, 113: 86-96.
|
[1] | ZHAO Jiangping, ZHANG Shuqi, ZHONG Xingrun, YU Kainan. Explosion characteristics of additive manufacturing aluminum and aluminum-silicon alloy powders[J]. Explosion And Shock Waves, 2025, 45(5): 055401. doi: 10.11883/bzycj-2024-0093 |
[2] | HU Lishuang, LIU Yang, YANG Yajun, ZHU He, LIANG Kaili, HU Shuangqi. Inhibition effect of water mist on RDX dust explosion[J]. Explosion And Shock Waves, 2024, 44(5): 055401. doi: 10.11883/bzycj-2023-0346 |
[3] | CHENG Fangming, GOU Ziyan, LUO Zhenmin, GE Tianjiao, GE Hanzhang. Effect of hydrogen ratio on inhibition property of wire mesh to propagation of the flame by methane premixed with hydrogen[J]. Explosion And Shock Waves, 2024, 44(4): 045402. doi: 10.11883/bzycj-2023-0295 |
[4] | GUO Rui, LI Nan, ZHANG Xinyan, ZHANG Yansong, XU Chang, ZHANG Gongyan, ZHAO Xing, XIE Yuxuan, HAN Zhelin. Correlation between pressure characteristics and thermochemical kinetics during suppression of micro/nano PMMA dust explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125401. doi: 10.11883/bzycj-2023-0058 |
[5] | ZHANG Qiwei, CHENG Yangfan, XIA Yu, WANG Zhonghua, WANG Quan, SHEN Zhaowu. Application of colorimetric pyrometer in the measurement of transient explosion temperature[J]. Explosion And Shock Waves, 2022, 42(11): 114101. doi: 10.11883/bzycj-2021-0477 |
[6] | GAO Jiancun, YANG Xigang, HU Shoutao, HONG Zijin, WANG Le, LI Ruxia, XIA Yimeng, SUN Xu. Effect of external magnetic field on explosion reaction of acetylene gas[J]. Explosion And Shock Waves, 2022, 42(7): 075401. doi: 10.11883/bzycj-2021-0417 |
[7] | WU Linyuan, YU Lifu, WANG Tianshu, SUN Wei, XU Jianhang, LI Hang. Explosion characteristics of oil shale dust in a confined space[J]. Explosion And Shock Waves, 2022, 42(1): 015401. doi: 10.11883/bzycj-2021-0139 |
[8] | ZHANG Yansong, LI Nan, GUO Rui, ZHANG Xinyan, ZHANG Gongyan, HUANG Xingwang. Relationship between pyrolysis kinetics and flame propagation characteristics of lauric acid and stearic acid dust explosion[J]. Explosion And Shock Waves, 2022, 42(7): 075402. doi: 10.11883/bzycj-2021-0470 |
[9] | LI Jingye, JIANG Xinsheng, YU Binbin, WANG Chunhui, WANG Zituo. Visualization experimental research of oil gas vapor cloud deflagration in large-scale unconfined space[J]. Explosion And Shock Waves, 2022, 42(3): 035401. doi: 10.11883/bzycj-2021-0176 |
[10] | ZHOU Yonghao, GAN Bo, JIANG Haipeng, HUANG Lei, GAO Wei. Investigations on the flame propagation characteristics in methane and coal dust hybrid explosions[J]. Explosion And Shock Waves, 2022, 42(1): 015402. doi: 10.11883/bzycj-2021-0064 |
[11] | GAN Bo, GAO Wei, ZHANG Xinyan, JIANG Haipeng, BI Mingshu. Effect of methane concentration on minimum concentration and thickness of preheating zone in PMMA/methane hybrid explosion[J]. Explosion And Shock Waves, 2019, 39(2): 025404. doi: 10.11883/bzycj-2017-0252 |
[12] | GAN Bo, GAO Wei, ZHANG Xinyan, JIANG Haipeng, BI Mingshu. Flame temperatures of PMMA dust clouds with different particle size distributions[J]. Explosion And Shock Waves, 2019, 39(1): 015401. doi: 10.11883/bzycj-2017-0244 |
[13] | YU Jianliang, JI Wentao, YAN Xingqing, YU Xiaozhe, HOU Yujie. Flame propagation characteristics of lycopodium dust explosion under explosion pressure accumulation conditions[J]. Explosion And Shock Waves, 2019, 39(2): 025401. doi: 10.11883/bzycj-2017-0436 |
[14] | DU Yang, WANG Shimao, YUAN Guangqiang, QI Sheng, WANG Bo, LI Guoqing, LI Yangchao. Experimental study of fuel-air mixture explosion characteristics in the short pipe containing weakly confined face at the end[J]. Explosion And Shock Waves, 2018, 38(2): 465-472. doi: 10.11883/bzycj-2015-0242 |
[15] | ZHANG Hongming, CHEN Xianfeng, ZHANG Ying, NIU Yi, DAI Huaming, HUANG Chuyuan. Flame propagation velocities of cornstarch dust explosion based on RGB color model[J]. Explosion And Shock Waves, 2018, 38(1): 133-139. doi: 10.11883/bzycj-2016-0278 |
[16] | Yu Jianliang, Ji Wentao, Sun Huili, Yan Xingqing, Zhang Xinyan. Experimental investigation of the lower explosion limit of hybrid mixtures of methane and lycopodium dust[J]. Explosion And Shock Waves, 2017, 37(6): 924-930. doi: 10.11883/1001-1455(2017)06-0924-07 |
[17] | Cao Wei-guo, Xu Sen, Liang Ji-yuan, Gao Wei, Pan Feng, Rao Guo-ning. Characteristics of flame propagation during coal dust cloud explosion[J]. Explosion And Shock Waves, 2014, 34(5): 586-593. doi: 10.11883/1001-1455(2014)05-0586-08 |
[18] | KUAI Nian-sheng, HUANG Wei-xing, YUAN Jing-jie, . Influenceofignitionenergyondustexplosionbehavior[J]. Explosion And Shock Waves, 2012, 32(4): 432-438. doi: 10.11883/1001-1455(2012)04-0432-07 |
[19] | GAO Cong, LI Hua, SU Dan, HUANG Wei-Xing. Explosion characteristics of coal dust in a sealed vessel[J]. Explosion And Shock Waves, 2010, 30(2): 164-168. doi: 10.11883/1001-1455(2010)02-0164-05 |
[20] | CHEN Zhi-hua, YE Jing-fang, FAN Bao-chun, JIANG Xiao-hai, GUI Ming-yue. Effects of a wedge obstacle on flame propagation and its structure[J]. Explosion And Shock Waves, 2006, 26(3): 208-213. doi: 10.11883/1001-1455(2006)03-0208-06 |
1. | 张帅,喻健良,丁建飞,闫兴清. 气流输运工况玉米淀粉爆炸火焰传播与压力特性实验研究. 化工学报. 2024(05): 2072-2080 . ![]() | |
2. | 喻健良,纪文涛,闫兴清,于小哲,侯玉洁. 爆炸压力积聚工况下石松子粉尘爆炸火焰传播特性. 爆炸与冲击. 2019(02): 162-168 . ![]() | |
3. | 张小良,叶圣军,刘晓晨,李浩,杨璐颖. 水平管道弱激波扬起沉积粉尘运动特征研究. 中国安全科学学报. 2019(01): 55-61 . ![]() | |
4. | 叶亚明,梁峻,封昌盛,李金清,张金进. 基于几种可燃粉尘自燃温度与燃烧速率的研究. 山东化工. 2019(11): 169-172 . ![]() | |
5. | 陈曦,陈先锋,张洪铭,刘晅亚,张英,牛奕,胡东涛. 惰化剂粒径对铝粉火焰传播特性影响的实验研究. 爆炸与冲击. 2017(04): 759-765 . ![]() |