He Qiang, Ma Da-wei, Zhang Zhen-dong. In-plane impact behavior of circular honeycomb structures randomly filled with rigid inclusions[J]. Explosion And Shock Waves, 2015, 35(3): 401-408. doi: 10.11883/1001-1455-(2015)03-0401-08
Citation: He Qiang, Ma Da-wei, Zhang Zhen-dong. In-plane impact behavior of circular honeycomb structures randomly filled with rigid inclusions[J]. Explosion And Shock Waves, 2015, 35(3): 401-408. doi: 10.11883/1001-1455-(2015)03-0401-08

In-plane impact behavior of circular honeycomb structures randomly filled with rigid inclusions

doi: 10.11883/1001-1455-(2015)03-0401-08
  • Received Date: 2013-09-17
  • Rev Recd Date: 2014-02-21
  • Publish Date: 2015-05-25
  • The model of circular honeycomb structures randomly filled with rigid inclusions which keeps the relative density as a constant is developed.And then the effects of impact velocity and packing ratio on the deformation modes, dynamic plateau stress and energy absorption capacities are discussed in detail.Research results show that the rigid inclusions have pinning effect in the process of deformation and the deformation modes can still be classified as quasi-static mode, transitional mode and dynamic mode.The plateau stress is proportional to the square of the impact velocity when the honeycombs are deformed at transitional mode or dynamic mode, which shows obvious speed effect. The energy absorption capacities of circular honeycombs are higher than these of the regular honeycombs at high-velocity impact.These results can provide valuable suggestions in the study and design of the functionally gradient honeycombs.
  • [1]
    Gibson L J, Ashby M F. Cellular solids: structure and properties[M]. 2nd ed, Cambridge: Cambridge University Press, 1997: 93-147.
    [2]
    卢天健, 何德坪, 陈常青, 等.超轻多孔金属材料的多功能特性及应用[J].力学进展, 2006, 36(4): 517-535. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz200604004

    Lu Tian-jian, He De-ping, Chen Chang-qing, et al. The multi-functionality of ultra-light porous metals and their applications[J]. Advances in Mechanics, 2006, 36(4): 517-535. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz200604004
    [3]
    Jeon I, Asahina T. The effect of structural defects on the compressive behavior of closed-cell A1 foam[J]. Acta Materialia, 2005, 53: 3415-3423. http://www.sciencedirect.com/science/article/pii/S1359645405002089
    [4]
    Kepets M, Lu T J, Dowling A P. Modeling of the role of defects in sintered FeCr Al Y foams[J]. Acta Mechanica Sinica, 2007, 23(5): 511-529. http://d.wanfangdata.com.cn/Periodical/lxxb-e200704005
    [5]
    Prakash O, Bichebois P, Brechet Y, et al. A note on the deformation behaviour of two-dimensional model cellular structures[J]. Philosophical Magazine A: Physics of Condensed Matter Structure Defects and Mechanical Properties, 1996, 73: 739-751. doi: 10.1080/01418619608242994
    [6]
    Chen C, Lu T J, Fleck N A. Effect of inclusions and holes on the stiffness and strength of honeycombs[J]. International Journal of Mechanical Sciences, 2001, 43(2): 487-504. http://www.sciencedirect.com/science/article/pii/S0020740399001228
    [7]
    Nakamoto H, Adachi T, Araki W. In-plane impact behavior of honeycomb structures randomly filled with rigid inclusions[J]. International Journal of Impact Engineering, 2009, 36(1): 73-80. http://www.sciencedirect.com/science/article/pii/S0734743X08000675
    [8]
    Nakamoto H, Adachi T, Araki W. In-plane impact behavior of honeycomb structures filled with linearly arranged inclusions[J]. International Journal of Impact Engineering, 2009, 36(8): 1019-1026. http://www.sciencedirect.com/science/article/pii/S0734743X09000281
    [9]
    Sun De-qiang, Zhang Wei-hong. In-plane crushing and energy absorption performance of multi-layer regularly arranged circular honeycombs[J]. Composite Structures, 2013, 96: 726-735. http://www.sciencedirect.com/science/article/pii/S0263822312004837
    [10]
    Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminum foams: PartⅠ: Experimental data and observations[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174-2205. http://www.ingentaconnect.com/content/el/00225096/2005/00000053/00000010/art00002
    [11]
    Reid S R, Peng C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering, 1997, 19(5/6): 531-570. http://www.sciencedirect.com/science/article/pii/S0734743X9700016X
    [12]
    Kooistra G W, Deshpande V S, Wadley H N G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminum[J]. Acta Materialia, 2004, 52(14): 4229-4237. http://www.sciencedirect.com/science/article/pii/S1359645404003131
  • Cited by

    Periodical cited type(5)

    1. 赵著杰,侯海量,李典,王克,姚梦雷. 部分充液多胞元结构的面内动态力学特性研究. 爆炸与冲击. 2022(03): 37-52 . 本站查看
    2. 李响,曹祥斌,杨蔚华,李林. 泡沫填充类蜂窝夹层结构的耐撞性. 武汉科技大学学报. 2021(01): 20-26 .
    3. 孙玉瑾,孙德强,安兴,焦思涵. 圆形蜂窝的异面冲击性能研究. 陕西科技大学学报. 2021(05): 139-145 .
    4. 游颖,张泽涛,郭琪. 两种新型蜂窝结构的承载性能对比. 湖北工业大学学报. 2020(01): 10-13 .
    5. 张金山,乔及森,孔海勇,苗红丽. 铝圆管蜂窝材料制备及其准静态压缩性能研究. 机械工程学报. 2020(16): 78-83 .

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (2898) PDF downloads(521) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return