Citation: | HU Hongwei, FENG Haiyun, CHEN Lang, GU Xiaohui, SONG Pu. Characteristic work capability of non-ideal explosives in concrete[J]. Explosion And Shock Waves, 2018, 38(1): 197-203. doi: 10.11883/bzycj-2016-0123 |
[1] |
郑孟菊, 余统昌, 张银亮.炸药的性能及测试技术[M].北京:兵器工业出版社, 1990:190-193;254-270.
|
[2] |
COOK M A. 工业炸药学[M]. 陈正衡, 孙姣花, 译. 北京: 煤炭工业出版社, 1987: 152-193.
|
[3] |
曹新茂.世界爆破器材手册[M].北京:兵器工业出版社, 1999:1110-1112.
|
[4] |
周俊祥, 徐更光, 王廷增.含铝炸药能量释放的简化模型[J].爆炸与冲击, 2005, 25(4):309-312. doi: 10.11883/1001-1455(2005)04-0309-04
ZHOU Junxiang, XU Gengguang, WANG Tingzeng. A simplified model of energy release for aluminized explosives[J]. Explosion and Shock Waves, 2005, 25(4):309-312. doi: 10.11883/1001-1455(2005)04-0309-04
|
[5] |
MILLER P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives[J]. Materials Research Society, 1996, 21(2):413-420. https://www.cambridge.org/core/journals/mrs-online-proceedings-library-archive/article/reactive-flow-model-with-coupled-reaction-kinetics-for-detonation-and-combustion-in-nonideal-explosives/71A7EB0613C56B01A2A30BF4B9451F18
|
[6] |
胡宏伟, 宋浦, 赵省向, 等.有限空间内部爆炸研究进展[J].含能材料, 2013, 21(4):539-546. http://www.oalib.com/paper/4861924
HU Hongwei, SONG Pu, ZHAO Shengxiang, et al. Progess in explosion in confined space[J]. Chinese Journal of Energetic Materials, 2013, 21(4):539-546. http://www.oalib.com/paper/4861924
|
[7] |
MARTIN A R, YALLOP H J. The correlation of explosive power with molecular structure[J]. Journal of Chemical Technology & Biotechnology, 1959, 9(6):310-315. doi: 10.1002/jctb.5010090604/references
|
[8] |
JOHANSSON C H, PERSSON P A.猛炸药爆轰学[M].北京:国防工业出版社, 1976:253-255.
|
[9] |
JOHANSSON C H, SJOLIN T. Measurement of the "strength" of explosives by the ballistic mortar[J]. Review of Scientific Instruments, 1968, 39(8):1173-1180. doi: 10.1063/1.1683610
|
[10] |
BJARNHOLT G, HOLMBERG R. Explosive expansion work in underwater detonations[C]//Proceedings of the 6th International Symposium on Detonation. San Diego, USA, 1976: 540-550.
|
[11] |
奥尔连科Л П. 爆炸物理学[M]. 3版. 孙承纬, 译. 北京: 科学出版社, 2011: 390-392.
|
[12] |
王肇中, 汪旭光, 夏斌.工业炸药做功能力的测试方法研究[J].火炸药学报, 2007, 30(6):24-26. http://www.cqvip.com/QK/91504X/201224/44411867.html
WANG Zhaozhong, WANG Xuguang, XIA Bin. Study on power test method of industrial explosives[J]. Chinese Journal of Explosives & Propellants, 2007, 30(6):24-26. http://www.cqvip.com/QK/91504X/201224/44411867.html
|
[13] |
HAMMOND L. Underwater shock wave characteristics of cylindrical charges: DSTO-GD-0029[R]. Aeronautical and Maritime Research Laboratory Ship Structures and Materials Division, 1995.
|
[14] |
北京工业学院八系《爆炸及其作用》编写组.爆炸及其作用(上册)[M].北京:国防工业出版社, 1979:122-124;129-133.
|
[15] |
张宝平, 张庆明, 黄风雷.爆轰物理学[M].北京:兵器工业出版社, 1999:162-170.
|
[16] |
赵国志, 张运法.战术导弹战斗部毁伤作用机理[M].南京:南京理工大学, 2002:256.
|
[1] | ZHANG Xiangru, CHENG Yuehua, WU Hao. Analysis on dynamic compressive behavior of concrete based on a 3D mesoscale model[J]. Explosion And Shock Waves, 2024, 44(2): 023102. doi: 10.11883/bzycj-2022-0541 |
[2] | JIANG Hongjie, LU Wenbo, WANG Gaohui, LIU Yijia, WANG Yang. On characteristics of failure zones in mass concrete subjected to underwater contact explosion[J]. Explosion And Shock Waves, 2023, 43(10): 102202. doi: 10.11883/bzycj-2022-0415 |
[3] | LI Ming, WANG Kehui, ZOU Huihui, DUAN Jian, GU Renhong, DAI Xianghui, YANG Hui. Crater morphology of a projectile penetrating a thick concrete target[J]. Explosion And Shock Waves, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294 |
[4] | DANG Faning, LI Yutao, REN Jie, ZHOU Mei. Analysis of dynamic mechanics and energy characteristics of concrete impact failure[J]. Explosion And Shock Waves, 2022, 42(8): 083202. doi: 10.11883/bzycj-2021-0444 |
[5] | HE Li, ZHONG Dongwang, LI Peng, SONG Kun, SI Jianfeng. Vibration prediction and energy analysis of slope under blasting load in underpass tunnel[J]. Explosion And Shock Waves, 2020, 40(7): 075201. doi: 10.11883/bzycj-2019-0255 |
[6] | WANG Jie, WU Haijun, ZHOU Jiequn, SHI Xiaohai, LI Jinzhu, PI Aiguo, HUANG Fenglei. Experiment research and crater analysis of long rodhypervelocity penetration into concrete[J]. Explosion And Shock Waves, 2020, 40(9): 093301. doi: 10.11883/bzycj-2019-0439 |
[7] | JIN Liu, HAO Huimin, ZHANG Renbo, DU Xiuli. Meso-scale simulations on dynamic splitting tensile behaviors of concrete at elevated temperatures[J]. Explosion And Shock Waves, 2020, 40(5): 053102. doi: 10.11883/bzycj-2018-0401 |
[8] | YANG Renshu, LI Weiyu, YANG Guoliang, MA Xinmin. Experimental study on the blasting effects of rich-iron ore with different explosives[J]. Explosion And Shock Waves, 2020, 40(6): 065201. doi: 10.11883/bzycj-2019-0396 |
[9] | ZHANG Yuhang, CHEN Qingqing, ZHANG Jie, WANG Zhiyong, LI Zhiqiang, WANG Zhihua. 3D mesoscale modeling method and dynamic mechanical properties investigation of concrete[J]. Explosion And Shock Waves, 2019, 39(5): 054205. doi: 10.11883/bzycj-2018-0408 |
[10] | PENG Yong, LU Fangyun, FANG Qin, WU Hao, LI Xiangyu. Analyses of the size effect for projectile penetrations into concrete targets[J]. Explosion And Shock Waves, 2019, 39(11): 113301. doi: 10.11883/bzycj-2018-0402 |
[11] | GAO Guangfa, GUO Yangbo. Analysis of the dynamic compressive test of high strength concrete[J]. Explosion And Shock Waves, 2019, 39(3): 033103. doi: 10.11883/bzycj-2017-0405 |
[12] | ZHOU Wenhai, LIANG Rui, YU Jianping, DU Chaofei, WANG Dunfan, LOU Xiaoming. Dimensionless analysis on peak particle vibration velocity induced by slope casting blast[J]. Explosion And Shock Waves, 2019, 39(5): 054201. doi: 10.11883/bzycj-2017-0373 |
[13] | Deng Yongjun, Chen Xiaowei, Yao Yong, Yang Tao. On ballistic trajectory of rigid projectile normal penetration based on a meso-scopic concrete model[J]. Explosion And Shock Waves, 2017, 37(3): 377-386. doi: 10.11883/1001-1455(2017)03-0377-10 |
[14] | Li Yucheng, Liu Tianqi, Zhou Xihua. An energy prediction model for coal dust explosion based on dimensional analysis[J]. Explosion And Shock Waves, 2017, 37(3): 566-570. doi: 10.11883/1001-1455(2017)03-0566-05 |
[15] | Song Meili, Li Wenbin, Wang Xiaoming, Feng Jun, Liu Zhilin. Experiments and dimensional analysis ofhigh-speed projectile penetration efficiency[J]. Explosion And Shock Waves, 2016, 36(6): 752-758. doi: 10.11883/1001-1455(2016)06-0752-07 |
[16] | Wang Xinying, Wang Shushan, Xu Yuxin, Hu Sai. Power capability and parameters of JWL equation of state for RDX-based PBX[J]. Explosion And Shock Waves, 2016, 36(2): 242-247. doi: 10.11883/1001-1455(2016)02-0242-06 |
[17] | QINJian-feng, JIAOQing-jie, NIEJian-xin. Numericalsimulationsoninfluencesofexplosiveproperties onrockparticlemovemen[J]. Explosion And Shock Waves, 2012, 32(6): 663-668. doi: 10.11883/1001-1455(2012)06-0663-06 |
[18] | WU Hao, FANGQin, GONG Zi-ming. Semi-theoreticalanalysesforpenetrationdepthofrigidprojectiles withdifferentnosegeometriesintoconcrete(rock)target[J]. Explosion And Shock Waves, 2012, 32(6): 573-580. doi: 10.11883/1001-1455(2012)06-0573-08 |
[19] | PANG Wei-bin, LI Yong-chi, HE Xiang. The regularity of arrival time in T-shaped tunnel for shock wave due to explosions from high explosive charges[J]. Explosion And Shock Waves, 2007, 27(1): 63-67. doi: 10.11883/1001-1455(2007)01-0063-05 |
[20] | MA Xiu-fang, ZHAO Feng, XIAO Ji-jun, JI Guang-fu, ZHU Wei, XIAO He-ming. Simulation study on structure and property of HMX-based multi-components PBX[J]. Explosion And Shock Waves, 2007, 27(2): 109-115. doi: 10.11883/1001-1455(2007)02-0109-07 |
1. | 高龙翔,高涵,潘文,薛乐星,冯晓军. 光电测试技术在炸药爆轰性能研究中的应用进展. 火炸药学报. 2024(12): 1055-1073 . ![]() | |
2. | 马冬冬,汪鑫鹏,马芹永,周志伟,杨毅,袁璞. 考虑围压效应的冻结砂土动态本构模型研究. 爆炸与冲击. 2023(04): 33-41 . ![]() | |
3. | 高涵,冯晓军,尚宇,张坤. 混合炸药微结构设计与制备研究进展. 火炸药学报. 2023(09): 761-775 . ![]() | |
4. | 陈武争,陈大鹏,陈力,方秦. 汽车安全气囊爆炸威力的确定方法. 振动与冲击. 2020(02): 163-168 . ![]() | |
5. | 李根,卢芳云,李翔宇. 测量炸药爆炸威力的实验方法研究. 中国测试. 2020(09): 40-46 . ![]() | |
6. | 陈武争,陈大鹏,陈力,张婧卿,方秦. 基于蒙特卡洛法的集装箱堆场危险品爆炸威力计算模型. 振动与冲击. 2019(16): 233-238+252 . ![]() |