Volume 38 Issue 2
Jan.  2018
Turn off MathJax
Article Contents
LIU Hongyan, LI Junfeng, PEI Xiaolong. A dynamic damage constitutive model for rockmass with intermittent joints under uniaxial compression[J]. Explosion And Shock Waves, 2018, 38(2): 316-323. doi: 10.11883/bzycj-2016-0261
Citation: LIU Hongyan, LI Junfeng, PEI Xiaolong. A dynamic damage constitutive model for rockmass with intermittent joints under uniaxial compression[J]. Explosion And Shock Waves, 2018, 38(2): 316-323. doi: 10.11883/bzycj-2016-0261

A dynamic damage constitutive model for rockmass with intermittent joints under uniaxial compression

doi: 10.11883/bzycj-2016-0261
  • Received Date: 2016-08-25
  • Rev Recd Date: 2016-12-05
  • Publish Date: 2018-03-25
  • The intermittent joints have obvious effect on the strength and deformability of engineering rockmass. The joint is assumed to be a kind of macroscopic damage to the rockmass in the damage mechanics, therefore the damage tensor is adopted to describe its effect on the rockmass. Now three kinds of joint parameters such as the geometrical ones, strength ones and deformational ones are proposed in the academic circles to describe the joint physical and mechanical properties. However, the existing calculation methods of the rockmass damage tensor consider only the joint geometrical or strength parameters, not its deformational parameters such as normal stiffness and shear stiffness. Therefore, on the basis of the existing studies, the fracture and damage theory is adopted to propose the damage tensor calculation formula of the rockmass caused by an intermittent joint under uniaxial compression, and then that caused by one row or multi-row of joints in one set is given by considering the interaction of the joints. Secondly, based on the rock mesoscopic dynamic damage constitutive model and the viewpoint of macroscopic and mesoscopic damage coupling, a dynamic damage constitutive model for the rockmass with intermittent joints is proposed which can consider the joint geometrical, strength or deformational parameters at the same time. Finally, the effects of joint parameters and load strain rate on the rockmass dynamic mechanical behaviors are discussed with the proposed model. It is found the decrease in the joint length and the increase in the joint friction angle will increase the dynamic climax strength and elastic modulus of the rockmass. While with increasing the joint normal stiffness and shear stiffness, the dynamic climax strength and elastic modulus of the rockmass decrease and increase, respectively. While when the joint normal stiffness and shear stiffness increase in the same proportion, the dynamic climax strength and elastic modulus of the rockmass increase. The dynamic climax strength of the rockmass has a positive correlation with the load strain rate.
  • loading
  • [1]
    AKIN M. Slope stability problems and back analysis in heavily jointed rock mass: A case study from Manisa, Turkey[J]. Rock Mechanics and Rock Engineering, 2013, 46(2):359-371. doi: 10.1007/s00603-012-0262-x
    [2]
    张力民, 吕淑然, 刘红岩.综合考虑宏细观缺陷的岩体动态损伤本构模型[J].爆炸与冲击, 2015, 35(3):428-436. doi: 10.11883/1001-1455-(2015)03-0428-09

    ZHANG Limin, LV Shuran, LIU Hongyan. A dynamic damage constitutive model for rock mass by comprehensively considering macroscopic and mesoscopic flaws[J]. Explosion and Shock Waves, 2015, 35(3):428-436. doi: 10.11883/1001-1455-(2015)03-0428-09
    [3]
    刘红岩, 杨艳, 李俊峰, 等.基于TCK模型的断续节理岩体动态损伤本构模型[J].爆炸与冲击, 2016, 36(3):319-325. doi: 10.11883/1001-1455(2016)03-0319-07

    LIU Hongyan, YANG Yan, LI Junfeng, et al. Dynamic damage constitutive model for rock mass with non-persistent joints based on the TCK model[J]. Explosion and Shock Waves, 2016, 36(3):319-325. doi: 10.11883/1001-1455(2016)03-0319-07
    [4]
    KYOYA T, ICHIKAWA Y, KAWAMOTO T. A damage mechanics theory for discontinuous rock mass[C]//Proceedings of the 5th International Conference on Numerical Methods in Geomechanics. Nagoya, 1985: 469-480.
    [5]
    KAWAMOTO T, ICHIKAWA Y, KYOYA T. Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory[J]. International Journal for Numerical Analysis Method in Geomechanics, 1988, 12(1):1-30. doi: 10.1002/(ISSN)1096-9853
    [6]
    SWOBODA G, SHEN X P, ROSAS L. Damage model for jointed rock mass and its application to tunneling[J]. Computers and Geotechnics, 1998, 22(3/4):183-203. https://www.sciencedirect.com/science/article/pii/S0266352X98000093
    [7]
    YUAN X P, LIU H Y, WANG Z Q. An interacting joint-mechanics based model for elastoplastic damage model of rock-like materials under compression[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 58(9):92-102. https://www.sciencedirect.com/science/article/pii/S1365160912002092
    [8]
    SWOBODA G, YANG Q. An energy-based damage model of geomaterials:Ⅰ: Formulation and numerical results[J]. International Journal of Solids and Structures, 1999, 36(9):1719-1734. https://www.sciencedirect.com/science/article/pii/S0020768398000365
    [9]
    LI N, CHEN W, ZHANG P, et al. The mechanical properties and a fatigue-damage model for jointed rock mass subjected to dynamic cyclical loading[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(7):1071-1079. https://www.researchgate.net/publication/248165191_The_mechanical_properties_and_a_fatigue-damage_model_for_jointed_rock_masses_subjected_to_dynamic_cyclical_loading
    [10]
    LIU Hongyan, ZHANG Limin. A damage constitutive model for rock mass with non-persistently closed joints under uniaxial compression[J]. Arabian Journal for Science and Engineering, 2015, 40(1):3107-3117. doi: 10.1007/s13369-015-1777-8
    [11]
    刘红岩, 王新生, 张力民, 等.断续节理岩体单轴压缩动态损伤本构模型[J].岩土工程学报, 2016, 38(3):426-436. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201802011.htm

    LIU Hongyan, WANG Xinsheng, ZHANG Limin, et al. A dynamic damage constitutive model for rock mass with non-persistent joints under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3):426-436. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201802011.htm
    [12]
    PRUDENCIO M, JAN M V S. Strength and failure modes of rock mass models with non-persistent joints[J]. International Journal of Rock mechanics & Mining Sciences, 2007, 46(6):890-902. https://www.sciencedirect.com/science/article/pii/S1365160907000160
    [13]
    TAYLOR L M, CHEN E P, KUSZMAUL J S. Microjoint induced damage accumulation in brittle rock under dynamic loading[J]. Computer Method in Applied Mechanics & Engineering, 1986, 55:301-320. http://www.sciencedirect.com/science/article/pii/0045782586900575
    [14]
    GRADY D E, KIPP M E. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 17(3):147-157. http://www.oalib.com/references/17407042
    [15]
    HUANG C, SUBHASH G, VITTON S J. A dynamic damage growth model for uniaxial compressive response of rock aggregates[J]. Mechanics of Materials, 2002, 34(5):267-277. doi: 10.1016/S0167-6636(02)00112-6
    [16]
    HUANG C, SUBHASH G. Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(6):1089-1105. doi: 10.1016/S0022-5096(03)00002-4
    [17]
    PALIWAL B, RAMESH K T. An interacting micro-joint damage model for failure of brittle materials under compression[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(3):896-923. doi: 10.1016/j.jmps.2007.06.012
    [18]
    LIU Taoying, CAO Ping, LIN Hang. Damage and fracture evolution of hydraulic fracturing in compression-shear rock cracks[J]. Theoretical and Applied Fracture Mechanics, 2014, 74:55-63. doi: 10.1016/j.tafmec.2014.06.013
    [19]
    LEE S, RAVICHANDRAN G. Joint initiation in brittle solids under multiaxial compression[J]. Engineering Fracture Mechanics, 2003, 70(13):1645-1658. doi: 10.1016/S0013-7944(02)00203-5
    [20]
    李建林, 哈秋瓴.节理岩体拉剪断裂与强度研究[J].岩石力学与工程学报, 1998, 17(3):259-266. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX904.028.htm

    LI Jianlin, HA Qiuling. A study of tensile-shear joint and strength related to jointed rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(3):259-266. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX904.028.htm
    [21]
    范景伟, 何江达.含定向闭合断续节理岩体的强度特性[J].岩石力学与工程学报, 1992, 11(2):190-199. http://www.cqvip.com/QK/96026X/199202/918156.html

    FAN Jingwei, HE Jiangda. The strength behavior of rockmasses containing oriented and closed intermittent joints[J]. Chinese Journal of Rock Mechanics and Engineering, 1992, 11(2):190-199. http://www.cqvip.com/QK/96026X/199202/918156.html
    [22]
    CHEN W, LA BORDERIE C, MAUREL O, et al. Simulation of damage-permeability coupling for mortar under dynamic loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(5):457-474. doi: 10.1002/nag.v38.5
    [23]
    GOODMAN R E. The mechanical properties of joints[C]//Proceeding of the 3rd Congress ISRM. Denver, 1974, Ⅰ(A): 127-140.
    [24]
    GOODMAN R E, TAYLOR R L, BREKKE T. A model for the mechanics of jointed rock[J]. Journal of Soil Mechanics and Foundations Division, 1968, 94:637-659. http://www.researchgate.net/publication/304714966_A_model_for_the_mechanics_of_jointed_rock?_sg=b8MO0PmdTRgxCnEO-TU_wZBP08GTw-SFYMaeUaPKFm6T503iva1D1R55D4t_A2-i31ZvUYvizDCpxoS7YpGA9npvef9GcG4jLRU_V82J8FI
    [25]
    BANDIS S C, LUMSDEN A C, BARTON N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20:249-268. https://www.sciencedirect.com/science/article/pii/0148906283905958
    [26]
    KUMAR A. The effect of stress rate and temperature on the strength of basalt and granite[J]. Geophysics, 1968, 33(3):501-510. doi: 10.1190/1.1439947
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (5319) PDF downloads(306) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return