Volume 38 Issue 3
Feb.  2018
Turn off MathJax
Article Contents
GUO Pengcheng, LI Jian, CAO Shufen, XU Congchang, LIU Zhiwen, LI Luoxing. Deformation behavior and microstructure evolution of an AM80 magnesium alloy at large strain rate range[J]. Explosion And Shock Waves, 2018, 38(3): 586-595. doi: 10.11883/bzycj-2016-0266
Citation: GUO Pengcheng, LI Jian, CAO Shufen, XU Congchang, LIU Zhiwen, LI Luoxing. Deformation behavior and microstructure evolution of an AM80 magnesium alloy at large strain rate range[J]. Explosion And Shock Waves, 2018, 38(3): 586-595. doi: 10.11883/bzycj-2016-0266

Deformation behavior and microstructure evolution of an AM80 magnesium alloy at large strain rate range

doi: 10.11883/bzycj-2016-0266
  • Received Date: 2016-08-30
  • Rev Recd Date: 2017-02-22
  • Publish Date: 2018-05-25
  • In order to understand the deformation behavior and microstructure evolution of a solution treated AM80 magnesium alloy under quasi-static and impact loadings, quasi-static and high-speed impact compression tests at room temperature were performed by an Instron universal compression machine and a slip Hopkinson pressure bar apparatus, respectively. Under quasi-static loadings, the flow stress of the AM80 magnesium alloy decreases gradually with the increase of the strain rate (3×10-5 s-1 ≤ $\dot \varepsilon $ ≤ 4×10-1 s-1), showing a negative strain rate sensitivity. While, it increases with the increase of the strain rate (7.00×102 s-1 ≤ $\dot \varepsilon $ ≤ 5.20×103 s-1) under impact loadings, demonstrating a significant positive strain rate sensitivity. Basal slip, mechanical twining as well as proper non-basal slip are the deformation mechanisms for the AM80 magnesium alloy under impact loadings. A larger number of dense tiny mechanical twins under impact loadings are the fundamental reasons for the significantly higher flow stress as compared with that under the quasi-static loadings. In addition, the deformation uniformity of the AM80 magnesium alloy increases significantly as the strain rate increases. When the strain rate increases to 3.65×103 s-1, dynamic recovery is detected in the same grains at the location of c, because the softening caused by the adiabatic temperature rise due to localized deformation is greater than the sum of strain hardening and strain rate hardening, which leads to a significant reduction in the density of deformation twins. As a result, the deformation uniformity declines finally.
  • loading
  • [1]
    KHAN A S, PANDEY A, GNAUPEL-HEROLD T, et al. Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures[J]. International Journal of Plasticity, 2011, 27(5):688-706. doi: 10.1016/j.ijplas.2010.08.009
    [2]
    AL-SAMMAN T, LI X, CHOWDHURY S G. Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloy[J]. Materials Science and Engineering:A, 2010, 527(15):3450-3463. doi: 10.1016/j.msea.2010.02.008
    [3]
    ESKANDARI M, ZAREI-HANZAKI A, PILEHVA F, et al. Ductility improvement in AZ31 magnesium alloy using constrained compression testing technique[J]. Materials Science and Engineering:A, 2013, 576(6):74-81. https://www.sciencedirect.com/science/article/pii/S0921509313003201
    [4]
    LIU Xiao, JONAS J J, LI Luoxing, et al. Flow softening, twinning and dynamic recrystallization in AZ31 magnesium[J]. Materials Science and Engineering:A, 2013, 583(42):242-253. https://www.sciencedirect.com/science/article/pii/S092150931300734X
    [5]
    LIU Xiao, JONAS J J, ZHU Biwu, et al. Variant selection of primary extension twins in AZ31 magnesium deformed at 400℃[J]. Materials Science and Engineering:A, 2016, 649:461-467. doi: 10.1016/j.msea.2015.10.020
    [6]
    YE Tuo, LI Luoxing, GUO Pengcheng, et al. Effect of aging treatment on the microstructure and flow behavior of 6063 aluminum alloy compressed over a wide range of strain rate[J]. International Journal of Impact Engineering, 2016, 90:72-80. doi: 10.1016/j.ijimpeng.2015.12.005
    [7]
    Yokoyama T. Impact tensile stress-strain characteristics of wrought magnesium alloys[J]. Strain, 2003, 39(4):167-175. doi: 10.1046/j.1475-1305.2003.00086.x
    [8]
    WU B L, ZHANG Y D, WAN G, et al. Primary twinning selection with respect to orientation of deformed grains in ultra-rapidly compressed AZ31 alloy[J]. Materials Science and Engineering:A, 2012, 541:120-127. doi: 10.1016/j.msea.2012.02.012
    [9]
    WAN G, WU B L, ZHANG Y D, et al. Anisotropy of dynamic behavior of extruded AZ31 magnesium alloy[J]. Materials Science and Engineering:A, 2010, 527(12):2915-2924. doi: 10.1016/j.msea.2010.01.023
    [10]
    MUKAI T, YAMANOI M, WATANABE H, et al. Effect of grain refinement on tensile ductility in ZK60 magnesium alloy under dynamic loading[J]. Materials Transactions, 2005, 42(7):1177-1181. http://cat.inist.fr/?aModele=afficheN&cpsidt=1102494
    [11]
    毛萍莉, 刘正, 王长义, 等.高应变速率下AZ31B镁合金的压缩变形组织[J].中国有色金属学报, 2009, 19(5):816-820. http://www.ysxbcn.com/down/down_36237.html

    MAO Pingli, LIU Zheng, WANG Changyi, et al. Deformation microstructure of AZ31B magnesium alloy under high strain rate compression[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(5):816-820. http://www.ysxbcn.com/down/down_36237.html
    [12]
    郭鹏程, 曹淑芬, 叶拓, 等.高速冲击载荷下AM80镁合金的力学本构及仿真模拟[J].中国有色金属学报, 2017, 27(6):1075-1082. http://www.ysxbcn.com/paper/paper_316358.html

    GUO Pengcheng, CAO Shufen, YE Tuo, et al. Mechanical constitutive equation and simulation of AM80 magnesium alloy uder high speed impact load[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6):1075-1082. http://www.ysxbcn.com/paper/paper_316358.html
    [13]
    MUKAI T, YAMANOI M, HIGASHI K. Processing of ductile magnesium alloy under dynamic tensile loading[J]. Materials Transactions, 2001, 42(12):2652-2654. doi: 10.2320/matertrans.42.2652
    [14]
    FENG Fei, HUANG Shangyu, MENG Zhenghua, et al. Experimental study on tensile property of AZ31B magnesium alloy at different high strain rates and temperatures[J]. Materials and Design, 2014, 57(5):10-20. https://www.sciencedirect.com/science/article/pii/S0261306913011643?_escaped_fragment_=
    [15]
    ULACIA I, DUDAMELL N V, GALVEZ F, et al. Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates[J]. Acta Materialia, 2010, 58(8):2988-2998. doi: 10.1016/j.actamat.2010.01.029
    [16]
    DUDAMELL N V, ULACIA I, GALVEZ F, et al. Influence of texture on the recrystallization mechanisms in an AZ31 Mg sheet alloy at dynamic rates[J]. Materials Science and Engineering:A, 2012, 532(1):528-535. http://www.sciencedirect.com/science/article/pii/S0921509311012391
    [17]
    MAO Pingli, LIU Zheng, WANG Changyi. Texture effect on high strain rates tension and compression deformation behavior of extruded AM30 alloy[J]. Materials Science and Engineering:A, 2012, 539(2):13-21. https://www.sciencedirect.com/science/article/pii/S0921509311014493
    [18]
    ZHAO Shiteng, MENG Chenlu, MAO Fengxin, et al. Influence of severe plastic deformation on dynamic strain aging of ultrafine grained Al-Mg alloys[J]. Acta Materialia, 2014, 76(2):54-67. https://www.sciencedirect.com/science/article/pii/S1359645414003425
    [19]
    毛勇建, 李玉龙, 史飞飞.用经典Hopkinson杆测试弹性模量的初步探讨[J].固体力学学报, 2009, 30(2):170-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtlxxb200902010

    MAO Yongjian, LI Yulong, SHI Feifei. A discussion on determining Youg's moduli by conventional split Hopkinson bar[J]. Chinese Journal of Solid Mechanics, 2009, 30(2):170-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtlxxb200902010
    [20]
    郭鹏程, 钱立和, 孟江英, 等.高锰奥氏体TWIP钢的单向拉伸与拉压循环变形行为[J].金属学报, 2014, 50(4):415-422. http://www.oalib.com/paper/4690981

    GUO Pengcheng, QIAN Lihe, MENG Jiangying, et al. Monotonic tension and tension-compression cyclic deformation behaviours of high manganese austenitic TWIP steel[J]. Acta Metallurgica Sinica, 2014, 50(4):415-422. http://www.oalib.com/paper/4690981
    [21]
    LEE W S, TANG Z C. Relationship between mechanical properties and microstructural response of 6061-T6 aluminum alloy impacted at elevated temperatures[J]. Materials and Design, 2014, 58(6):116-124. https://www.sciencedirect.com/science/article/pii/S026130691400082X
    [22]
    胡昌明, 贺红亮, 胡时胜.45号钢的动态力学性能研究[J].爆炸与冲击, 2003, 23(2):188-192. http://www.bzycj.cn/CN/abstract/abstract10045.shtml

    HU Changming, HE Hongliang, HU Shisheng. A study on dynamic mechancial behaviors of 45 steel[J]. Explosion and Shock Waves, 2003, 23(2):188-192. http://www.bzycj.cn/CN/abstract/abstract10045.shtml
    [23]
    XIE Chao, FANG Qihong, LIU Xiao, et al. Theoretical study on the {1012} deformation twinning and cracking in coarse-grained AM80 magnesium alloys[J]. International Journal of Plasticity, 2016, 82:44-61. doi: 10.1016/j.ijplas.2016.02.001
    [24]
    AHMAD I R, SHU D W. Compressive and constitutive analysis of AZ31B magnesium alloy over a wide range of strain rates[J]. Metals and Materials International, 2015, 21(5):823-831. doi: 10.1007/s12540-015-5120-4
    [25]
    刘庆.镁合金塑性变形机理研究进展[J].金属学报, 2010, 46(11):1458-1472. https://www.wenkuxiazai.com/doc/52292f28e009581b6ad9eb34.html

    LIU Qing. Research progress on plastic deformation mechanism of Mg alloys[J]. Acta Metallurgica Sinica, 2010, 46(11):1458-1472. https://www.wenkuxiazai.com/doc/52292f28e009581b6ad9eb34.html
    [26]
    YANG Yongbiao, WANG Fuchi, TAN Chengwen, et al. Plastic deformation mechanisms of AZ31 magnesium alloy under high strain rate compression[J]. Transactions of Nonferrous Metals Socity of China, 2008, 18(5):1043-1046. doi: 10.1016/S1003-6326(08)60178-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (5541) PDF downloads(186) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return