Volume 38 Issue 3
Feb.  2018
Turn off MathJax
Article Contents
ZHI Xudong, ZHANG Rong, LIN Li, FAN Feng. Dynamic constitutive model of Q235B steel and its application in LS-DYNA[J]. Explosion And Shock Waves, 2018, 38(3): 596-602. doi: 10.11883/bzycj-2016-0286
Citation: ZHI Xudong, ZHANG Rong, LIN Li, FAN Feng. Dynamic constitutive model of Q235B steel and its application in LS-DYNA[J]. Explosion And Shock Waves, 2018, 38(3): 596-602. doi: 10.11883/bzycj-2016-0286

Dynamic constitutive model of Q235B steel and its application in LS-DYNA

doi: 10.11883/bzycj-2016-0286
  • Received Date: 2016-09-20
  • Rev Recd Date: 2017-02-14
  • Publish Date: 2018-05-25
  • In this work we conducted a quasi-static tensile test, a high temperature tensile test and a dynamic tensile test on Q235B steel, the most widely used in steel structures in China, using a multi-functional material testing machine and a split Hopkinson tension bar (SHTB) and, based on the test data obtained, fitted three frequently used material models, i.e. the Cowper-Symonds model, the Johnson-Cook model and the Zerilli-Armstrong model, in LS-DYNA. We then verified their validity by conducting Taylor impact tests. The results showed that Q235B steel was temperature and strain-rate sensitive, that the Cowper-Symonds model was applicable in low velocity impact simulations, that the Johnson-Cook model was suitable for simulations with a wider range of strain-rates, and that the Zerilli-Armstrong model was not recommendable for low velocity impact simulation.
  • loading
  • [1]
    杨桂通.弹塑性力学引论[M].北京:清华大学出版社, 2013.
    [2]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain-rates and high temperatures[C]//Proceedings of the seventh international Symposium on Ballistic. The Hague, 1983: 541-547.
    [3]
    COWPER G R, SYMONDS P S. Strin hardening and strain rate effect in the impact loading of cantilever beams[J]. Small Business Economics, 1957, 31(3):235-263. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0144762
    [4]
    ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5):1816-1825. doi: 10.1063/1.338024
    [5]
    邓高涛, 王焕然, 陈大年.一种钢板材料动态拉伸本构方程确定以及试件尺度效应研究[J].工程力学, 2014, 31(1):236-242. doi: 10.6052/j.issn.1000-4750.2012.09.0669

    DENG Gaotao, WANG Huanran, CHEN Danian. Determination of dynamic tensile constitutive for steel sheet material and discussion of effects of specimen scale on experimental results engineering mechanic[J]. Engineering Mechanics, 2014, 31(1):236-242. doi: 10.6052/j.issn.1000-4750.2012.09.0669
    [6]
    于文静, 史健勇, 赵金城.Q345钢材动态力学性能研究[J].建筑结构, 2011, 41(3):28-30. http://www.docin.com/p-249433150.html

    YU Wenjing, SHI Jianyong, ZHAO Jincheng. Research of dynamic mechanical behavior of Q345 steel[J]. Building Structure, 2011, 41(3):28-30. http://www.docin.com/p-249433150.html
    [7]
    林莉, 支旭东, 范锋, 等.Q235B钢Johnson-Cook模型参数的确定[J].振动与冲击, 2014, 33(9):153-158. http://www.docin.com/p-1411276719.html

    LIN Li, ZHI Xudong, FAN Feng, et al. Determination of parameters of Johnson-Cook models of Q235B steel[J]. Journal of Vibration and Shock, 2014, 33(9):153-158. http://www.docin.com/p-1411276719.html
    [8]
    李营, 李晓彬, 吴卫国, 等.基于修正CS模型的船用低碳钢动态力学性能研究[J].船舶力学, 2015, 19(8):944-949. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_cblx201508008

    LI Ying, LI Xiaobin, WU Weiguo, et al. Dynamic mechanic behavior of low-carbon steel on improved Cowper-Symonds models[J]. Journal of Ship Mechanics, 2015, 19(8):944-949. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_cblx201508008
    [9]
    CHEN Z J, YUAN J H, ZHAO Y. Impact experiment study of ship building steel at 450 MPa level and constitutive model of Cowper-Symonds[J]. Journal of Ship Mechanics, 2007, 11(6):933-940. doi: 10.3184/096034010X12761931945540?scroll=top
    [10]
    FAN F, WANG D, ZHI X, et al. Failure modes of reticulated domes subjected to impact and the judgment[J]. Thin-Walled Structures, 2010, 48(2):143-149. doi: 10.1016/j.tws.2009.08.005
    [11]
    杨庆丰, 张荣.基于LS-DYNA圆钢管抗侧向冲击性能分析[J].低温建筑技术, 2014, 36(12):38-41. doi: 10.3969/j.issn.1001-6864.2014.12.014

    YANG Qingfeng, ZHANG Rong. Study of the lateral impact of circular steel tubes based on LS-DYNA[J]. Low Temperature Architecture Technology, 2014, 36(12):38-41. doi: 10.3969/j.issn.1001-6864.2014.12.014
    [12]
    JONES N. Structural impact[M]. Cambridge:Cambridge University Press, 2011.
    [13]
    蔡恒君, 胡靖帆, 宋仁伯, 等.800 MPa级冷轧双相钢的动态变形行为及本构模型[J].工程科学学报, 2016, 38(2):213-222. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_bjkjdxxb201602009

    CAI Hengjun, HU Jingfan, SONG Renbo, et al. Constitutive model and dynamic deformation behavior of 800 MPa grade cold-rolled dual phase steel[J]. Chinese Journal of Engineering, 2016, 38(2):213-222. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_bjkjdxxb201602009
    [14]
    张宏建, 温卫东, 崔海涛, 等.Z-A模型的修正及在预测本构关系中的应用[J].航空动力学报, 2009, 24(6):1311-1315. http://www.cqvip.com/QK/91591X/200906/31774602.html

    ZHANG Hongjian, WEN Weidong, CUI Haitao, et al. Modification of Z-A model and the prediction of the constitutive model[J]. Journal of Aerospace Power, 2009, 24(6):1311-1315. http://www.cqvip.com/QK/91591X/200906/31774602.html
    [15]
    彭建祥. 钽的本构关系研究[D]. 四川绵阳: 中国工程物理研究院, 2001.
    [16]
    马晓青.冲击动力学[M].北京:北京理工大学出版社, 1992.
    [17]
    MEYERS M A. Dynamic behavior of materials[M]. New Jersey:John Wiley & Sons. Inc., 1994.
    [18]
    HALLQUIST J O. LS-Dyna theory manual[Z]. Michigan: LSTC, 2006.
    [19]
    肖新科. 双层金属靶的抗侵彻性能和Taylor杆的变形与断裂[D]. 哈尔滨: 哈尔滨工业大学, 2010.
    [20]
    陈大年, 王焕然, 陈建平, 等.高加载率SHPB试验分析原理的再研究[J].工程力学, 2005, 22(1):82-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx200501015

    CHEN Danian, WANG Huanran, CHEN Jianping, et al. Re-examination of split Hopkinson pressure bar analyses at high loading rate[J]. Engineering Mechanics, 2005, 22(1):82-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx200501015
    [21]
    CHEN Danian, FAN Chunlei, XIE Shugang, et al. Study on constitutive relations and spall models for OFHC copper under planar shock tests[J]. Journal of Applied Physics, 2007, 101(6):063532-1-9. doi: 10.1063/1.2711405
    [22]
    TAYLOR G I. The use of flat ended projectiles for determining yield stress I:theoretical considerations[J]. Proceedings of Royal Society of London:A, 1948, 194:289-299. doi: 10.1098/rspa.1948.0081
    [23]
    RAKVAG K G, BORVIK T, WESTERMANN I, et al. An experimental study on the deformation and fracture modes of steel projectiles during impact[J]. Materials & Design, 2013, 51(5):242-256. https://www.sciencedirect.com/science/article/pii/S0261306913003592
    [24]
    WOODWARD R L, BURMAN N M, BAXTER B J. An experimental and analytical study of the taylor impact test[J]. International Journal of Impact Engineering, 1994, 15(4):407-416. doi: 10.1016/0734-743X(94)80025-5
    [25]
    JOSEPH C F, MARTIN G, WILSON L L. The use of the Taylor test in exploring and validating the large-strain, high strain-rate constitutive response of materials[C]//Furnish M D. Shock Compression of Condensed Matter-2001. American Institute of Physics, 2002: 1318-1322.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (6372) PDF downloads(445) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return