Volume 38 Issue 4
May  2018
Turn off MathJax
Article Contents
LI Chenghua, JIANG Zhaoxiu, WANG Beiqiao, ZHANG Zhen, WANG Yonggang. Nonlinear mechanical response of PZT95/5 ferroelectric ceramics under high strain rate loading[J]. Explosion And Shock Waves, 2018, 38(4): 707-715. doi: 10.11883/bzycj-2016-0329
Citation: LI Chenghua, JIANG Zhaoxiu, WANG Beiqiao, ZHANG Zhen, WANG Yonggang. Nonlinear mechanical response of PZT95/5 ferroelectric ceramics under high strain rate loading[J]. Explosion And Shock Waves, 2018, 38(4): 707-715. doi: 10.11883/bzycj-2016-0329

Nonlinear mechanical response of PZT95/5 ferroelectric ceramics under high strain rate loading

doi: 10.11883/bzycj-2016-0329
  • Received Date: 2016-10-31
  • Rev Recd Date: 2017-03-04
  • Publish Date: 2018-07-25
  • In this study we fabricated four kinds of unpoled PZT95/5 ferroelectric ceramics in a range of different porosity levels by systematic additions of pore formers and investigated the high strain rate response of the unpoled PZT95/5 using the ultra-high speed camera and digital image correlation (DIC) technique to measure the full-field strain in a split Hopkinson pressure bar (SHPB) test. Based on the results of the full-field strain, we found that the strain distribution is uniform in the middle of the specimen and its average value as the strain of the specimen is more reasonable than the strain calculated from the traditional theory of SHPB. By using the pulse shaping technique to obtain an early constant strain rate, the effect of the lateral inertia confinement can be eliminated. The apparent dynamic compressive strength enhancement of the unpoled PZT95/5 in a SHPB test was observed to be strain-rate sensitive. Based on the variation of the axial strain and radial strain with axial stress, we attributed the nonlinear deformation mechanism of the unpoled PZT95/5 to the domain switching and phase transformation. The critical stresses for the domain switching and phase transformation increased with the strain rate. In addition, we discussed the influence of porosity in the high strain-rate response, and the results indicated that the dynamic compressive strength and the critical stresses for the domain switching and phase transformation of the unpoled PZT95/5 decreased with the increase of porosity.
  • loading
  • [1]
    钟纬烈.铁电体物理学[M].北京:科学出版社, 1996.
    [2]
    杜金梅, 张毅, 张福平, 等.冲击加载下PZT95/5铁电陶瓷的脉冲大电流输出特性[J].物理学报, 2006, 55(5):2584-2589. doi: 10.7498/aps.55.2584

    DU Jinmei, ZHANG Yi, ZHANG Fuping, et al. Large current out-put of PZT 95/5 ferroelectric ceramics under shock loading[J]. Acta Physica Sinica, 2006, 55(5):2584-2589. doi: 10.7498/aps.55.2584
    [3]
    LYSNE P C, PERCIVAL C M. Electric energy generation by shock compression of ferroelectric ceramics: Normal-mode response of PZT 95/5[J]. Journal of Applied Physics, 1975, 46(4):1519-1525. doi: 10.1063/1.321803
    [4]
    SETCHELL R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Depoling currents[J]. Journal of Applied Physics, 2005, 97(1):013507. doi: 10.1063/1.1828215
    [5]
    SETCHELL R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Hugoniot states and constitutive mechanical properties[J]. Journal of Applied Physics, 2003, 94(1):573-588. doi: 10.1063/1.1578526
    [6]
    ZHANG F P, HE H L, LIU G M, et al. Failure behavior of Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under shock compression[J]. Journal of Applied Physics, 2013, 113(18):183501. doi: 10.1063/1.4803052
    [7]
    ZEUCH D H, MONTGOMERY S T, HOLCOMB D J. Uniaxial compression experiments on lead zirconate titanate 95/5-2Nb ceramic: Evidence for an orientation-dependent, "maximum compressive stress" criterion for onset of the ferroelectric to antiferroelectric polymorphic transformation[J]. Journal of Materials Research, 2000, 15(3):689-703. doi: 10.1557/JMR.2000.0102
    [8]
    ZEUCH D H, MONTGOMERY S T, HOLCOMB D J. The effects of nonhydrostatic compression and applied electric field on the electromechanical behavior of poled lead zirconate titanate 95/5-2Nb ceramic during the ferroelectric to antiferroelectric polymorphic transformation[J]. Journal of Materials Research, 1999, 14(5):1814-1827. doi: 10.1557/JMR.1999.0245
    [9]
    AVDEEV M, JORGENSEN J D, SHORT S, et al. Pressure-induced ferroelectric to antiferroelectric phase transition in Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3[J]. Physical Review B, 2006, 73(6):064105. doi: 10.1103/PhysRevB.73.064105
    [10]
    FENG N, NIE H, CHEN X, et al. Depoling of porous Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics under shock wave load[J]. Current Applied Physics, 2010, 10(6):1387-1390. doi: 10.1016/j.cap.2010.04.012
    [11]
    SETCHELL R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Microstructural effects[J]. Journal of Applied Physics, 2007, 101(5):053525. doi: 10.1063/1.2697428
    [12]
    蒋招绣, 辛铭之, 申海艇, 等.多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变[J].物理学报, 2015, 64(13):134601. doi: 10.7498/aps.64.134601

    JIANG Zhaoxiu, XIN Mingzhi, SHEN Haiting, et al. Mechanical properties and phase transformation of porous unpoled Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression[J]. Acta Physica Sinica, 2015, 64(13):134601. doi: 10.7498/aps.64.134601
    [13]
    蒋招绣, 申海艇, 辛铭之, 等.多孔极化PZT95/5铁电陶瓷单轴压缩力学响应与放电特性[J].固体力学学报, 2016, 37(1):50-57. http://www.cqvip.com/QK/95077X/201601/668194836.html

    JIANG Zhaoxiu, SHEN Haiting, XIN Mingzhi, et al. Mechanical properties and depoling of porous poled PZT95/5 ferroelectric ceramics under uniaxial compression[J]. Chinese Journal of Solid Mechanics, 2016, 37(1):50-57. http://www.cqvip.com/QK/95077X/201601/668194836.html
    [14]
    王礼立.应力波基础[M].2版.北京:国防工业出版社, 2010.
    [15]
    YANG L M, SHIM V P W. An analysis of stress uniformity in split Hopkinson bar test specimens[J]. International Journal of Impact Engineering, 2005, 31(2):129-150. doi: 10.1016/j.ijimpeng.2003.09.002
    [16]
    朱珏, 胡时胜, 王礼立.SHPB试验中粘弹性材料的应力均匀性分析[J].爆炸与冲击, 2006, 26(4):315-322. doi: 10.11883/1001-1455(2006)04-0315-08

    ZHU Jue, HU Shisheng, WANG Lili. Analysis on stress uniformity of viscoelastic materials in split Hopkinson bar tests[J]. Explosion and Shock Waves, 2006, 26(4):315-322. doi: 10.11883/1001-1455(2006)04-0315-08
    [17]
    毛勇建, 李玉龙.SHPB试验中试件的轴向应力均匀性[J].爆炸与冲击, 2008, 28(5):448-454. doi: 10.11883/1001-1455(2008)05-0448-07

    MAO Yongjian, LI Yulong. Axial stress uniformity in specimens of SHPB tests[J]. Explosion and Shock Wave, 2008, 28(5):448-454. doi: 10.11883/1001-1455(2008)05-0448-07
    [18]
    SCHREIER H, ORTEU J J, SUTTON M A. Image correlation for shape, motion and deformation measurements[M]. New York: Springer, 2009.
    [19]
    FREW D J, FORRESTAL M J, CHEN W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2002, 42(1):93-106. doi: 10.1007/BF02411056
    [20]
    LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures, 2003, 40(2):343-360. doi: 10.1016/S0020-7683(02)00526-7
    [21]
    FORRESTAL M J, WRIGHT T W, CHEN W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test[J]. International Journal of Impact Engineering, 2007, 34(3):405-411. doi: 10.1016/j.ijimpeng.2005.12.001
    [22]
    杨卫.力电失效学[M].北京:清华大学出版社, 2000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (6075) PDF downloads(338) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return