GUO Zitao, GAO Bin, GUO Zhao, ZHANG Wei. Dynamic constitutive relation based on J-C model of Q235 steel[J]. Explosion And Shock Waves, 2018, 38(4): 804-810. doi: 10.11883/bzycj-2016-0333
Citation: GUO Zitao, GAO Bin, GUO Zhao, ZHANG Wei. Dynamic constitutive relation based on J-C model of Q235 steel[J]. Explosion And Shock Waves, 2018, 38(4): 804-810. doi: 10.11883/bzycj-2016-0333

Dynamic constitutive relation based on J-C model of Q235 steel

doi: 10.11883/bzycj-2016-0333
  • Received Date: 2016-11-01
  • Rev Recd Date: 2017-02-15
  • Publish Date: 2018-07-25
  • In this paper, we studied the quasi-static performance and the dynamic compression and tensile properties of the Q235 steel at temperatures ranging from the room temperature to 900 ℃ using a universal testing machine and the split Hopkinson bar system. Based on the experimental results, we modified the thermal softening item in the Johnson-Cook (J-C) constitutive model and proposed a revised J-C constitutive model for Q235 steel, which we then validated using Taylor impact experiments and corresponding numerical simulations.
  • [1]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands, 1983: 541-547. https://www.researchgate.net/publication/313069830_A_constitutive_model_and_data_for_metals_subjected_to_large_strains_high_strain_rates_and_high_temperatures
    [2]
    ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5):1816-1825. doi: 10.1063/1.338024
    [3]
    STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate[J]. Journal of Applied Physics, 1980, 51(3):1498-1504. doi: 10.1063/1.327799
    [4]
    陈小伟, 张方举, 梁斌, 等.A3钢钝头弹撞击45钢板破坏模式的试验研究[J].爆炸与冲击, 2006, 26(3):199-207. doi: 10.11883/1001-1455(2006)03-0199-09

    CHEN Xiaowei, ZHANG Fangju, LIANG Bin, et al. Three modes of penetration mechanics of A3 steel cylindrical projectiles impact onto 45 steel plates[J]. Explosion and Shock Waves, 2006, 26(3):199-207. doi: 10.11883/1001-1455(2006)03-0199-09
    [5]
    陈刚, 陈小伟, 陈忠富, 等.A3钢钝头弹撞击45钢板破坏模式的数值分析[J].爆炸与冲击, 2007, 27(5):390-397. doi: 10.11883/1001-1455(2007)05-0390-08

    CHEN Gang, CHEN Xiaowei, CHEN Zhongfu, et al. Simulations of A3 steel blunt projectiles impacting 45 steel plates[J]. Explosion and Shock Waves, 2007, 27(5):390-397. doi: 10.11883/1001-1455(2007)05-0390-08
    [6]
    CHEN X W, WEI L M, LI J C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target[J]. International Journal of Impact Engineering, 2015, 79:102-116. doi: 10.1016/j.ijimpeng.2014.11.007
    [7]
    DENG Y F, ZHANG W, CAO Z S. Experimental investigation on the ballistic resistance of monolithic and multi-layered plates against ogival-nosed rigid projectiles impact[J]. Materials and Design, 2013, 44:228-239. doi: 10.1016/j.matdes.2012.06.048
    [8]
    DENG Y F, ZHANG W, YANG Y G, et al. Experimental investigation on the ballistic performance of double-layered plates subjected to impact by projectile of high strength[J]. International Journal of Impact Engineering, 2014, 70:38-49. doi: 10.1016/j.ijimpeng.2014.03.003
    [9]
    张伟, 肖新科, 郭子涛, 等.双层A3钢靶对平头杆弹的抗侵彻性能研究[J].高压物理学报, 2012, 26(2):163-170. doi: 10.11858/gywlxb.2012.02.007

    ZHANG Wei, XIAO Xinke, GUO Zitao, et al. Investigation on the ballistic resistance of double-layered A3 steel targets against blunt projectile impact[J]. Chinese Journal of High Pressure Physics, 2012, 26(2):163-170. doi: 10.11858/gywlxb.2012.02.007
    [10]
    郭子涛, 郭钊, 张伟.单层A3钢薄靶在不同头型弹体斜撞击下的失效模式和防护性能研究[J].振动与冲击, 2018, 37(1):27-31. http://www.doc88.com/p-3049100067915.html

    GUO Zitao, GUO Zhao, ZHANG Wei. Study on failure patterns and ballistic resistance of thin single A3 steel targets obliquely impacted by different nose shape projectiles[J]. Journal of Vibration and Shock, 2018, 37(1):27-31. http://www.doc88.com/p-3049100067915.html
    [11]
    陈俊岭, 舒文雅, 李金威.Q235钢材在不同应变率下力学性能的试验研究[J].同济大学学报(自然科学版), 2016, 44(7):1071-1075. doi: 10.11908/j.issn.0253-374x.2016.07.014

    CHEN Junling, SHU Wenya, LI Jinwei. Experimental study on dynamic mechanical property of Q235 steel at different strain rates[J]. Journal of Tongji University (Natural Science), 2016, 44(7):1071-1075. doi: 10.11908/j.issn.0253-374x.2016.07.014
    [12]
    JOUN M S, EOM J G, LEE M C. A new method for acquiring true stress-strain curves over a large range of strains using a tensile test and finite element method[J]. Mechanics of Materials, 2008, 40(7):586-593. doi: 10.1016/j.mechmat.2007.11.006
    [13]
    EHLERS S, VARSTA P. Strain and stress relation for non-linear finite element simulations[J]. Thin-Walled Structures, 2009, 47(11):1203-1217. doi: 10.1016/j.tws.2009.04.005
    [14]
    CHOUNG J M, CHO S R. Study on true stress correction from tensile tests[J]. Journal of Mechanical Science and Technology, 2008, 22(6):1039-1051. doi: 10.1007/s12206-008-0302-3
    [15]
    陈刚, 陈忠富, 陶俊林, 等.45钢动态塑性本构参量与验证[J].爆炸与冲击, 2005, 25(5):451-456. doi: 10.11883/1001-1455(2005)05-0451-06

    CHEN Gang, CHEN Zhongfu, TAO Junlin, et al. Investigation and validation on plastic constitutive parameters of 45 steel[J]. Explosion and Shock Waves, 2005, 25(5):451-456. doi: 10.11883/1001-1455(2005)05-0451-06
    [16]
    肖新科. 双层金属靶的抗侵彻性能和Taylor杆的变形与断裂[D]. 哈尔滨: 哈尔滨工业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10213-1011278906.htm
    [17]
    BØRVIK T, HOPPERSTAD O S, BERSTAD T, et al. A computational model of viscoplasticity and ductile damage for impact and penetration[J]. European Journal of Mechanics: A/Solids, 2001, 20(5):685-712. doi: 10.1016/S0997-7538(01)01157-3
  • Relative Articles

    [1]TAN Yi, YANG Shuyi, SUN Yaobing, GUO Xiaojun. Determination of constitutive relation and fracture criterion parameters for ZL114A aluminum alloy[J]. Explosion And Shock Waves, 2024, 44(1): 013104. doi: 10.11883/bzycj-2022-0531
    [2]WANG Qiang, WANG Jianjun, ZHANG Xiaoqiong, ZHANG Tianhui, WANG Huaikun, WU Guiying. Advances in the research of metallic thermo-viscoplastic constitutive relationships[J]. Explosion And Shock Waves, 2022, 42(9): 091402. doi: 10.11883/bzycj-2021-0443
    [3]WANG Lili, WANG Hui, DING Yuanyuan, CHEN Xiabo, YANG Liming, GONG Wenbo, HUAN Shi, MIAO Fuxing. Exploration of experimental study on constitutive relations of pulse waves[J]. Explosion And Shock Waves, 2022, 42(12): 121101. doi: 10.11883/bzycj-2022-0434
    [4]ZHU Lei, LIU Yang, MENG Jinhui, LI Zhiguo, HU Jianbo, LI Guoping, WANG Yonggang. Dynamic mechanical properties and constitutive relationship of selective laser melted Ti-6Al-4V alloy[J]. Explosion And Shock Waves, 2022, 42(9): 091405. doi: 10.11883/bzycj-2021-0227
    [5]ZHOU Lun, SU Xingya, JING Lin, DENG Guide, ZHAO Longmao. Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy[J]. Explosion And Shock Waves, 2022, 42(9): 091407. doi: 10.11883/bzycj-2022-0154
    [6]MA Shengguo, WANG Zhihua. Dynamic mechanical properties and constitutive relations of CoCrFeNiAlx high entropy alloys[J]. Explosion And Shock Waves, 2021, 41(11): 111101. doi: 10.11883/bzycj-2020-0293
    [7]SHI Yanli, JI Sunhang, WANG Wenda, ZHENG Long. The lateral impact performance of concrete-filled steel tubular (CFST) members at high temperatures[J]. Explosion And Shock Waves, 2020, 40(4): 043303. doi: 10.11883/bzycj-2019-0293
    [8]JIAO Chujie, LI Xibo, CHENG Congmi, LI Congbo. Dynamic damage constitutive relationship of high strength concrete based on fractal theory[J]. Explosion And Shock Waves, 2018, 38(4): 925-930. doi: 10.11883/bzycj-2016-0377
    [9]GUO Zitao, SHU Kaiou, GAO Bin, ZHANG Wei. J-C model based failure criterion and verification of Q235 steel[J]. Explosion And Shock Waves, 2018, 38(6): 1325-1332. doi: 10.11883/bzycj-2017-0163
    [10]Liu Mingtao, Li Yongchi, Hu Xiuzhang, Zhang Jie. The numerical stability of the constitutive calculation on viscoplastic materials[J]. Explosion And Shock Waves, 2017, 37(5): 969-975. doi: 10.11883/1001-1455(2017)05-0969-07
    [11]ZhaoGuang-ming, XieLi-xiang, MengXiang-rui. Aconstitutivemodelforsoftrockunderimpactload[J]. Explosion And Shock Waves, 2013, 33(2): 126-132. doi: 10.11883/1001-1455(2013)02-0126-07
    [12]WEI Yan-peng, YU Gang, DUAN Zhu-ping. Mechanicalpropertiesoflaser-weldeddissimilarstainlesssteelsstructure atelevatedtemperatureandhighstrainrates[J]. Explosion And Shock Waves, 2011, 31(5): 504-509. doi: 10.11883/1001-1455(2011)05-0504-06
    [13]ZHANG Wei, XIAO Xin-ke, WEI Gang. Constitutiverelationandfracturemodelof7A04aluminumalloy[J]. Explosion And Shock Waves, 2011, 31(1): 81-87. doi: 10.11883/1001-1455(2011)01-0081-07
    [14]HUANG Xia, TANG Wen-hui, JIANG Bang-hai. Constitutiverelationforanisotropicmaterialsunderplane-strainconditions anditsapplicationtostress-wavepropagationsimulation[J]. Explosion And Shock Waves, 2010, 30(4): 383-389. doi: 10.11883/1001-1455(2010)04-0383-07
    [15]SONG Yan-ze, LI Zhi-qiang, ZHAO Long-mao. Finite element analysis of dynamic crushing behaviors of closed-cell foams based on a tetrakaidecahedron model[J]. Explosion And Shock Waves, 2009, 29(1): 49-55. doi: 10.11883/1001-1455(2009)01-0049-07
    [16]LIN Mu-sen, PANG Bao-jun, ZHANG Wei, CHI Run-qiang. Experimental investigation on a dynamic constitutive relationship of 5A06 Al alloy[J]. Explosion And Shock Waves, 2009, 29(3): 306-311. doi: 10.11883/1001-1455(2009)03-0306-06
    [17]WANG Yuan-bo, WANG Xiao-jun, YU Yu-miao, HU Xiu-zhang. Quasi-static and dynamic mechanical properties of Kevlar/epoxy composite laminates and its constitutive equation[J]. Explosion And Shock Waves, 2008, 28(3): 200-206. doi: 10.11883/1001-1455(2008)03-0200-07
    [18]SHANG Bing, SHENG Jing, WANG Bao-zhen, HU Shi-sheng. Dynamic mechanical behavior and constitutive model of stainless steel[J]. Explosion And Shock Waves, 2008, 28(6): 527-531. doi: 10.11883/1001-1455(2008)06-0527-05
    [19]ZHAO Guang-ming, SONG Shun-cheng, MENG Xiang-rui. Research on an analytic method for Taylor impact of a cylinder projectile[J]. Explosion And Shock Waves, 2006, 26(6): 498-504. doi: 10.11883/1001-1455(2006)06-0498-07
    [20]SUN Zi-jian, WANG Li-li. The constitutive behavior of PP/PA polymer blends taking account of damage evolution at high strain rate and large deformation[J]. Explosion And Shock Waves, 2006, 26(6): 492-497. doi: 10.11883/1001-1455(2006)06-0492-06
  • Cited by

    Periodical cited type(48)

    1. 樊召帅,葛树宏,岳增申,彭宇翔,焦建凯,刘建华,张钱城. 侧向强动冲击下冲击位置对薄壁圆柱壳动态响应的影响. 应用数学和力学. 2025(02): 175-186 .
    2. 郅慧栋,郭保全,丁宁,闫钊鸣,朱家萱,万晨. Mg-9Gd-4Y-2Zn-0.5Zr合金的Johnson-Cook本构模型及失效参数研究. 稀有金属材料与工程. 2025(03): 714-721 .
    3. 许育文,顾学康,赵南. 重复碰撞载荷下加筋板结构的动态响应研究. 装备环境工程. 2024(03): 55-63 .
    4. 郭佳凯,朱春晓,施锐,陈威,李晓彬. 冲击波作用下变形圆板表面载荷研究. 舰船科学技术. 2024(05): 21-26 .
    5. 刘振宇. 火灾爆炸作用下钢框架结构破坏分析. 科技创新与应用. 2024(13): 73-77 .
    6. 范俊锴,刘帅,赵武. 薄橡胶层改善喷丸质量机理研究. 河南理工大学学报(自然科学版). 2024(04): 103-110 .
    7. 王宁,张翼,张咏鸥,张涛. 舰船内高能量密度电容过载爆炸损伤分析. 武汉理工大学学报(交通科学与工程版). 2024(03): 491-495 .
    8. 高宁,徐刚,张亮,陈勇,戴翔,贾文杰,赵弟宏,范霁康. 核电站常用管道材料J-C本构模型参数识别及验证. 压力容器. 2024(06): 8-15 .
    9. 张智扬,赵振宇,任建伟,高辉遥. 蜂窝夹芯结构用连接接头抗冲击性能研究. 应用数学和力学. 2024(08): 1024-1036 .
    10. 曲艳东,李帅清,汪帅. 爆炸荷载作用下曲面钢-混凝土钢组合板的动态响应研究. 大连民族大学学报. 2024(05): 418-424 .
    11. 张勇,闫月光,胡蝶,王海福,葛超. 多破片冲击引爆屏蔽装药增强效应机理研究. 北京理工大学学报. 2024(11): 1105-1115 .
    12. 邓云飞,胡昂,任光辉,魏刚. 7050-T7351铝合金力学性能测试及本构模型研究. 材料导报. 2023(03): 192-198 .
    13. 张斌,李继承,陈建良,杨璞,何丽灵,陈刚. 构型弹体跌落冲击载荷及结构响应特性. 爆炸与冲击. 2023(03): 63-84 . 本站查看
    14. 刘晶,张波,杜展鹏,何汶峰,苏玉龙. B280VK高强钢的Johnson-Cook本构模型与失效参数确定. 塑性工程学报. 2023(05): 116-125 .
    15. 刘斌,剡昌锋,魏理林,杨昊东,赵小曼. 弧齿锥齿轮复合磨粒磨削性能仿真与分析. 机械强度. 2023(03): 684-691 .
    16. 邹广平,吴松阳,杨柳,唱忠良,王宣. 氧化石墨烯/陶瓷球增强聚氨酯SPS复合板抗侵彻性能. 振动与冲击. 2023(13): 17-24 .
    17. 范俊锴,刘帅,贾增辉,赵武,刘伟. 金属表面薄橡胶铺层对喷丸质量的影响. 金属热处理. 2023(06): 291-296 .
    18. Meng-tao Zhang,Yang Pei,Xin Yao,Yu-xue Ge. Damage assessment of aircraft wing subjected to blast wave with finite element method and artificial neural network tool. Defence Technology. 2023(07): 203-219 .
    19. 王亮,贾海深,张继林,罗文翠. 基于J-C模型440C不锈钢动态本构关系的修正. 机械强度. 2023(04): 805-813 .
    20. 洪豆,郑宇,李文彬,李一鸣,姜宁. 钨合金破片侵彻钢靶的穿靶能量研究. 哈尔滨工程大学学报. 2023(08): 1412-1417 .
    21. 曾萍,刘志刚,黄长勇,雒方旭,张华鹏,蔡新景. 一种环链连接金具的摩擦磨损特性有限元仿真分析. 湖南电力. 2023(04): 90-94 .
    22. 杨锐,汪泉,谢守冬,李瑞,涂唱畅,徐小猛,李孝臣. 负压爆炸载荷作用下固支钢板变形研究. 高压物理学报. 2023(05): 82-90 .
    23. 王梦莹,张君博,梁海志,张纪刚. 点阵夹芯结构拱形防护门抗爆性能研究. 青岛理工大学学报. 2023(06): 31-39+51 .
    24. 马遵农,廖礼宝,熊杰. 套筒法兰焊接件失效机理分析. 冶金设备. 2023(S2): 112-117 .
    25. 王慧. 引信殉爆阈值数值模拟. 现代制造技术与装备. 2022(04): 66-68 .
    26. 张天星,余毅磊,蒋招绣,王晓东,高光发. 薄板氧化铝陶瓷复合装甲抗侵彻行为规律研究. 兵器材料科学与工程. 2022(04): 24-29 .
    27. 张杜江,赵振宇,贺良,任建伟,强鹭升,周贻来. 基于Johnson-Cook本构模型的高强度装甲钢动态力学性能参数标定及验证. 兵工学报. 2022(08): 1966-1976 .
    28. 周伦,苏兴亚,敬霖,邓贵德,赵隆茂. 6061-T6铝合金动态拉伸本构关系及失效行为. 爆炸与冲击. 2022(09): 113-124 . 本站查看
    29. 张旭升,伊兆锋,秦睿贤,陈秉智,李世文. 基于遗传算法的AlSi10Mg合金本构方程参数反演. 大连交通大学学报. 2022(06): 57-64 .
    30. 赖余斌,洪巧章. 换流变压器套管洞口封堵抗爆性能研究. 建材世界. 2021(02): 82-84+105 .
    31. 包志强,张勇,张柱柱,樊伟杰,孟莉莉. 38CrMoAl高强度钢动态力学性能及其J-C本构模型. 机械工程材料. 2021(05): 76-83 .
    32. 胡静,张伟岐,张银波,祝家奇,邓云飞. 卵形弹体冲击铝合金泡沫夹芯板失效特性研究. 兵器材料科学与工程. 2021(04): 125-132 .
    33. 杜华池,张先锋,刘闯,熊玮,李鹏程,陈海华. 弹体斜侵彻多层间隔钢靶的弹道特性. 兵工学报. 2021(06): 1204-1214 .
    34. 刘思祺,胡兆吉,陈文江,熊新. 爆炸碎片撞击立式拱顶储罐穿透行为的数值模拟. 管道技术与设备. 2021(06): 31-37 .
    35. 马胜国,王志华. CoCrFeNiAl_x系高熵合金的动态力学性能和本构关系. 爆炸与冲击. 2021(11): 4-14 . 本站查看
    36. 张浩,乔文靖,杨帆,朱浩云. 强腐蚀桥梁钢Q345的J-C本构模型及数值模拟. 郑州大学学报(工学版). 2021(06): 99-104 .
    37. 张玉玉,王树山,任凯,刘洋,李守苍. 小尺寸钨块对单兵防护装备侵彻的弹道极限研究. 兵器装备工程学报. 2020(02): 60-62+110 .
    38. 蔡一杰,胡勇,XIONG Jie,WANG Chengfang. Dimpling Suppression by Chamfered Rotatable Cubic Punch in Reconfigurable Die Forming. Journal of Wuhan University of Technology(Materials Science). 2020(02): 407-410 .
    39. 衣海娇,甄莹,曹宇光,张士华,史永晋. 6061-T6铝合金断裂应变与应力三轴度关系研究. 机械强度. 2020(03): 551-558 .
    40. 林莉,黄博,肖新科,朱昱,徐天立. Q355B钢动态材料性能研究. 振动与冲击. 2020(18): 231-237 .
    41. 陈跃良,张柱柱,卞贵学,张勇,黄海亮. 高应变率条件下38CrMoAl钢的动态力学行为及失效模型. 航空学报. 2020(10): 409-419 .
    42. 李彦超,徐鹏,蔡宣明,李海涛,秦国华. 爆炸载荷作用下含预制损伤膜片力学响应特性. 兵器装备工程学报. 2020(12): 149-154+176 .
    43. 王芳,周末,纪刘奇. 起爆方式对定向多爆炸成型弹丸成型性能的影响. 兵器装备工程学报. 2019(08): 5-9 .
    44. 周琳,王子豪,文鹤鸣. 简论金属材料JC本构模型的精确性(英文). 高压物理学报. 2019(04): 3-16 .
    45. 吴尚霖,鞠康,段春争,孔金星. 细晶T2纯铜动态力学性能及本构模型. 工具技术. 2019(11): 16-20 .
    46. 张红艳,蔡宣明,马铁华,张瑜,范志强,高玉波. 高能气体冲击载荷作用下高压容器仓排放孔膜片损伤模式及机理研究. 振动与冲击. 2019(23): 146-151 .
    47. 郭子涛,郭钊,张伟. 弹体斜撞击单层金属薄靶的数值仿真. 高压物理学报. 2018(04): 116-126 .
    48. 郭子涛,舒开鸥,高斌,张伟. 基于J-C模型的Q235钢的失效准则. 爆炸与冲击. 2018(06): 1325-1332 . 本站查看

    Other cited types(53)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (7338) PDF downloads(698) Cited by(101)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return