Citation: | GE Chao, Wubuliaisan MAIMAITITUERSUN, TIAN Chao, DONG Yongxiang, SONG Qing. Impact-induced initiation thresholds of polytetrafluoroethylene/Al composite by gas gun[J]. Explosion And Shock Waves, 2018, 38(1): 1-8. doi: 10.11883/bzycj-2017-0030 |
[1] |
JOSHI V S. Process for making polytetrafluoroethylene-aluminium composite and product made: US6547993[P]. 2003.
|
[2] |
阳世清, 徐松林, 张彤. Al/PTFE反应材料制备工艺及性能[J].国防科技大学学报, 2008, 30(6):40-42. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gfkj200806010&dbname=CJFD&dbcode=CJFQ
YANG Shiqing, XU Songlin, ZHANG Tong. Preparation and performance of PTEF/Al reactive materials[J]. Journal of National University of Defense Technology, 2008, 30(6):40-42. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gfkj200806010&dbname=CJFD&dbcode=CJFQ
|
[3] |
赵鹏铎, 卢芳云, 李俊玲, 等.活性材料Al/PTFE动态压缩性能[J].含能材料, 2009, 17(4):459-462. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hncl200904023&dbname=CJFD&dbcode=CJFQ
ZHAO Pengduo, LU Fangyun, LI Junling, et al. The dynamic compressive properties of Al/PTFE reactive materials[J]. Chinese Journal of Energetic Materials, 2009, 17(4):459-462. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hncl200904023&dbname=CJFD&dbcode=CJFQ
|
[4] |
徐松林, 阳世清, 赵鹏铎, 等.Al/PTFE含能复合材料的压缩力学行为研究[J].力学学报, 2009, 41(5):708-712. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxxb200905014&dbname=CJFD&dbcode=CJFQ
XU Songlin, YANG Shiqing, ZHAO Pengduo, et al. The study on the compressive behavior of Al/PTFE energetic composite[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5):708-712. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxxb200905014&dbname=CJFD&dbcode=CJFQ
|
[5] |
王海福, 刘宗伟, 俞为民, 等.活性破片能量输出特性试验研究[J].北京理工大学学报, 2009, 29(8):663-666. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bjlg200908003&dbname=CJFD&dbcode=CJFQ
WANG Haifu, LIU Zongwei, YU Weimin, et al. Experimental investigation of energy release characteristics of reactive fragments[J]. Transactions of Beijing Institute of Technology, 2009, 29(8):663-666. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bjlg200908003&dbname=CJFD&dbcode=CJFQ
|
[6] |
MOCK J W, DROTAR J T. Effect of Al particle size on the impact initiation of pressed Al/PTFE composite rods[J]. Shock Compression of Condensed Matter, 2007(6):971-974. doi: 10.1063/1.2833292
|
[7] |
乌布力艾散·麦麦提图尔荪, 董永香, 葛超, 等.基于Al/PTFE真实细观特性统计模型的宏观力学性能模拟[J].复合材料学报, 2016, 33(11):2528-2536. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=fuhe201611016&dbname=CJFD&dbcode=CJFQ
MAIMAITITUERSUN Wubuliaisan, DONG Yongxiang, GE Chao, et al. Simulation on mechanical properties of Al/PTFE based on mesoscopic statistical model[J]. Acta Materiae Compositae Sinica, 2016, 33(11):2528-2536. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=fuhe201611016&dbname=CJFD&dbcode=CJFQ
|
[8] |
帅俊峰, 蒋建伟, 王树有, 等.复合反应破片对钢靶侵彻的实验研究[J].含能材料, 2009, 17(6):722-725. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hncl200906024&dbname=CJFD&dbcode=CJFQ
SHUAI Junfeng, JIANG Jianwei, WANG Shuyou, et al. Compound reactive fragment penetrating steel target[J]. Chinese Journal of Energetic Materials, 2009, 17(6):722-725. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hncl200906024&dbname=CJFD&dbcode=CJFQ
|
[9] |
谢长友, 蒋建伟, 帅俊峰, 等.复合反应破片对柴油油箱的毁伤效应实验研究[J].高压物理学报, 2009, 23(6):447-452. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gywl200906009&dbname=CJFD&dbcode=CJFQ
XIE Changyou, JIANG Jianwei, SHUAI Junfeng, et al. Experimental study on the damage effect of compound reactive fragment penetrating diesel oil tank[J]. Chinese Journal of High Pressure Physics, 2009, 23(6):447-452. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gywl200906009&dbname=CJFD&dbcode=CJFQ
|
[10] |
AMES R G. Vented chamber calorimetry for impact-nitiated energetic materials[C]//The 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, United States, 2005: 275-279.
|
[11] |
LEE R, MOCK J W, CARNEY J, et al. Reactive materials studies[C]//Shock Compression of Condensed Matter 2005: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Baltimore, Maryland, United States, 2005: 169-174
|
[12] |
HUNT E M, MALCOLM S, PANTOYA M L, DAVIS F. Impact ignition of nano and micron composite energetic materials[J]. International Journal of Impact Engineering, 2009, 36(6):842-846. doi: 10.1016/j.ijimpeng.2008.11.011
|
[13] |
ZHANG X, SHI A, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials[J]. Journal of Applied Physics, 2013, 113(8):2129-1156. https://ieeexplore.ieee.org/document/6471104/
|
[14] |
MOCK J W, HOLT W H. Impact initiation of rods of pressed polytetrafluoroethylene (PTFE) and aluminum powders[C]//Shock Compression of Condensed Matter 2005: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Baltimore, Maryland, United States, 2005: 1097-1100.
|
[15] |
MEYERS M A. Dynamic behavior of materials[M]. John Wiley & Sons, Inc.1994.
|
[16] |
RAFTENBERG M N, MOCK J W, KIRBY G C. Modeling the impact deformation of rods of a pressed PTFE/Al composite mixture[J]. International Journal of Impact Engineering, 2008, 35(12):1735-1744. doi: 10.1016/j.ijimpeng.2008.07.041
|
[17] |
AMES R G. Energy release characteristics of impact-initiated energetic materials[J]. Materials Research Society Symposium Proceedings, 2005, 896(3):321-333. https://www.mendeley.com/research-papers/energy-release-characteristics-impactinitiated-energetic-materials/
|
[1] | LI Diyuan, ZHOU Aohui, CHEN Yuda, MA Jinyin. Identification of stress thresholds for crack propagation of rock under quasi-static and dynamic loadings[J]. Explosion And Shock Waves, 2023, 43(10): 103102. doi: 10.11883/bzycj-2023-0065 |
[2] | REN Yeping, LIU Rui, CHEN Pengwan, GUO Yansong, HU Qiwen, GE Chao, WANG Haifu. A study of the response characteristics of Al/PTFE reactive materials under shock loading[J]. Explosion And Shock Waves, 2022, 42(6): 063103. doi: 10.11883/bzycj-2021-0397 |
[3] | HU Haibo, FU Hua, LI Tao, SHANG Hailin, WEN Shanggang. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement[J]. Explosion And Shock Waves, 2020, 40(1): 011401. doi: 10.11883/bzycj-2019-0346 |
[4] | GUO Chun, GUO Shangsheng, QIAN Jianping, GU Wenbin. Numerical simulation on shock critical initiation velocity of cylindrical covered charge by multiple fragment impacts[J]. Explosion And Shock Waves, 2020, 40(6): 062301. doi: 10.11883/bzycj-2019-0391 |
[5] | HE Liling, ZHANG Fangju, YAN Yixia, XIE Ruoze, XU Aimin, ZHOU Yanliang. Study on the impact initiated reaction of Ti-6Al-4V prejectiles by the fracture modes[J]. Explosion And Shock Waves, 2020, 40(12): 122301. doi: 10.11883/bzycj-2020-0046 |
[6] | ZHANG Pinliang, SONG Guangming, GONG Zizheng, TIAN Dongbo, WU Qiang, CAO Yan, LI Yu, LI Ming. Shielding performances of a Whipple shield enhanced by Al/Mg impedance-graded materials[J]. Explosion And Shock Waves, 2019, 39(12): 125101. doi: 10.11883/bzycj-2018-0461 |
[7] | DING Tong, GUO Wencan, ZHANG Xu, WANG Zhongmiao, ZHENG Xianxu, LIU Cangli. Reaction properties of Al-teflon with different particle sizes under laser ablation[J]. Explosion And Shock Waves, 2019, 39(4): 041402. doi: 10.11883/bzycj-2019-0023 |
[8] | YU Zhongshen, FANG Xiang, LI Yuchun, REN Junkai, ZHANG Jun, SONG Jiaxing. Effects of TiH2 content on dynamic mechanical properties and impact sensitivity of Al/PTFE[J]. Explosion And Shock Waves, 2019, 39(9): 092301. doi: 10.11883/bzycj-2018-0256 |
[9] | LIU Jun, TIAN Zhou, ZHONG Wei. Numerical simulation of strain threshold of monolithic tempered glass under blast wave[J]. Explosion And Shock Waves, 2018, 38(3): 671-676. doi: 10.11883/bzycj-2016-0300 |
[10] | Wubuliaisan MAIMAITITUERSUN, GE Chao, TIAN Chao, DONG Yongxiang. Impact-induced initiation criteria of PTFE/Al by split Hopkinson pressure bar[J]. Explosion And Shock Waves, 2018, 38(5): 957-965. doi: 10.11883/bzycj-2017-0075 |
[11] | Li Shunping, Feng Shunshan, Xue Zaiqing, Tu Jian. Mechanical properties of PTFE at high strain rate[J]. Explosion And Shock Waves, 2017, 37(6): 1046-1050. doi: 10.11883/1001-1455(2017)06-1046-05 |
[12] | Li Jin-he, Fu Hua, Zeng Dai-peng, Li Tao. The reaction threshold of JOB-9003 explosive under low amplitude loading[J]. Explosion And Shock Waves, 2015, 35(6): 876-880. doi: 10.11883/1001-1455(2015)06-0876-05 |
[13] | Pei Hong-bo, Jiao Qing-jie, Qin Jian-feng. Reaction process of aluminized RDX-based explosives based on cylinder test[J]. Explosion And Shock Waves, 2014, 34(5): 636-640. doi: 10.11883/1001-1455(2014)05-0636-05 |
[14] | LI Jin-he, WEN Shang-gang, TAN Duo-wang, LI Tao. ReactionthresholdofexplosiveJO-9159underlow-amplitudeshock[J]. Explosion And Shock Waves, 2011, 31(2): 148-152. doi: 10.11883/1001-1455(2011)02-0148-05 |
[15] | YANG Zhen-qi, PANG Bao-jun, WANG Li-wen, CHI Run-qiang. JH-2modelanditsapplicationtonumericalsimulationonAl2O3ceramic underlow-velocityimpact[J]. Explosion And Shock Waves, 2010, 30(5): 463-471. doi: 10.11883/1001-1455(2010)05-0463-09 |
[16] | ZHANG Xian-Feng, ZHAO Xiao-Ning, QIAO Liang. Theory analysis on shock-induced chemical reaction of reactive metal[J]. Explosion And Shock Waves, 2010, 30(2): 145-151. doi: 10.11883/1001-1455(2010)02-0145-07 |
[17] | WEN Xia, YANG Shi-Yuan, WANG Jun-Xia, ZHANG Lin, LIU Xiao-Nan. Effects of plane shock loading on structure of Ti6Al4V alloy[J]. Explosion And Shock Waves, 2010, 30(3): 320-324. doi: 10.11883/1001-1455(2010)03-0320-05 |
[18] | XU Song-lin, YANG Shi-qing, ZHANG Wei, LU Fang-yun. AconstitutiverelationforapressedPTFE/Alenergeticcompositematerial[J]. Explosion And Shock Waves, 2010, 30(4): 439-444. doi: 10.11883/1001-1455(2010)04-0439-06 |
[19] | QIAO Zhi-qiang, NIE Fu-de, YANG Guang-cheng, ZHANG Juan. Relationshipbetweenmicrostructuresofnano-TATB andshockinitiationthresholdsofitscomposites[J]. Explosion And Shock Waves, 2010, 30(1): 75-79. doi: 10.11883/1001-1455(2010)01-0075-05 |
[20] | ZHANG A-man, ZHOU Qi-xin, YAO Xiong-liang, GUO Bai-sen, WEN Xue-you, . Anti-shock threshold values of shipboard equipments based on ship hull and equipment integrated analysis[J]. Explosion And Shock Waves, 2009, 29(4): 375-379. doi: 10.11883/1001-1455(2009)04-0375-05 |
1. | 李凌峰,王辉,韩秀凤,沈飞,周涛. Al/PTFE与炸药组合装药的爆炸释能特性. 火炸药学报. 2023(01): 69-75 . ![]() | |
2. | 李凌峰,王辉,韩秀凤,沈飞. Al/PTFE活性材料在炸药爆轰作用下的响应特性研究. 兵器装备工程学报. 2023(02): 174-179 . ![]() | |
3. | 王海福,向镜安. 活性毁伤材料及其应用技术研究进展. 中国科学:技术科学. 2023(09): 1434-1448 . ![]() | |
4. | 葛超,曲卓君,王晋,胡蝶,王海福. 氟聚物基活性材料动态压剪实验研究. 兵工学报. 2022(08): 1816-1822 . ![]() | |
5. | 聂政元,肖建光,王岩鑫,谢志渊. THV基活性材料力学性能与点火反应特性. 兵工学报. 2022(12): 3030-3039 . ![]() | |
6. | 陈进,曹召勋,郭双锋,王军,梁争峰,刘刚伟,肖川. Al-NI-W活性材料组织性能及毁伤效应研究. 兵器材料科学与工程. 2020(04): 29-35 . ![]() | |
7. | 高庆,程秀莲,唐恩凌,陈闯,常孟周,韩雅菲. Al/PTFE弹丸冲击反应释能及Al颗粒粒径的影响. 兵器装备工程学报. 2020(08): 121-125 . ![]() | |
8. | 于钟深,方向,李裕春,任俊凯,张军,宋佳星. TiH_2含量对Al/PTFE动态力学性能和撞击感度的影响. 爆炸与冲击. 2019(09): 44-51 . ![]() | |
9. | 曹林,于钟深,方向,李裕春,张军,吴家祥,宋佳星. Al/TiH_2/PTFE三元活性材料的热行为研究. 火炸药学报. 2019(06): 583-588+596 . ![]() |