Volume 38 Issue 5
Jul.  2018
Turn off MathJax
Article Contents
LIU Zhilin, WANG Xiaoming, LI Wenbin, YAO Wenjin, SONG Meili. Numerical and experimental study of an ogival projectile vertical perforating a medium thickness concrete target[J]. Explosion And Shock Waves, 2018, 38(5): 1083-1090. doi: 10.11883/bzycj-2017-0078
Citation: LIU Zhilin, WANG Xiaoming, LI Wenbin, YAO Wenjin, SONG Meili. Numerical and experimental study of an ogival projectile vertical perforating a medium thickness concrete target[J]. Explosion And Shock Waves, 2018, 38(5): 1083-1090. doi: 10.11883/bzycj-2017-0078

Numerical and experimental study of an ogival projectile vertical perforating a medium thickness concrete target

doi: 10.11883/bzycj-2017-0078
  • Received Date: 2017-05-13
  • Rev Recd Date: 2017-07-08
  • Publish Date: 2018-09-25
  • In order to understand the law dominating the process of an ogival projectile perforating a medium thickness concrete target, the tests of the ogival projectiles of 60 mm diameter perforating concrete targets of (10-30)D thickness were carried out. The effect of concrete thickness on residual velocity was obtained in the tests. The meshless SPH method, combing the RHT concrete constitutive model and the p-α equation of state, was used to simulate perforation tests. Simulation results on perforation acceleration and damage process reveal that there are three stages in the perforation process, including catering, tunneling, and rear effect zone. Furthermore, the range of rear effect zone increases with increasing concrete thickness at the same projectile velocity. The comparison between the experimental results and the simulation results show that the current simulation model is able to simulate projectiles perforating concrete targets, and the simulation results provide insight into the perforation mechanisms.
  • loading
  • [1]
    文鹤鸣.混凝土靶板冲击响应的经验公式[J].爆炸与冲击, 2003, 23(3):267-274. doi: 10.3321/j.issn:1001-1455.2003.03.014

    WEN Heming. Empirical equations for the impact response of concrete targets[J]. Explosion and Shock Waves, 2003, 23(3):267-274. doi: 10.3321/j.issn:1001-1455.2003.03.014
    [2]
    HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths[J]. International Journal of Impact Engineering, 1992, 12(12):1-7. http://cn.bing.com/academic/profile?id=9f03befe241a1ac9be6d5957563e031a&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    YANKELEVSKY D Z. Local response of concrete slabs to low velocity missile impact[J]. International Journal of Impact Engineering, 1997, 19(4):331-343. doi: 10.1016/S0734-743X(96)00041-3
    [4]
    DANCYGIER A N. Rear face damage of normal and high-strength concrete elements caused by hard projectile impact[J]. Aci Structural Journal, 1998, 95(3):291-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ025002989
    [5]
    葛涛, 刘保荣, 王明洋.弹体侵彻与贯穿有限厚度混凝土靶体的力学特性[J].爆炸与冲击, 2010, 30(2):159-163. http://www.bzycj.cn/CN/abstract/abstract8380.shtml

    GE Tao, LIU Baorong, WANG Mingyang. Penetration and perforation of concrete targets with finite thickness by projectiles[J]. Explosion and Shock Waves, 2010, 30(2):159-163. http://www.bzycj.cn/CN/abstract/abstract8380.shtml
    [6]
    HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[J]. Journal of Applied Mechanics, 2011, 78(5):051003. doi: 10.1115/1.4004326
    [7]
    RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[R]. 1999.
    [8]
    张若棋, 丁育青, 汤文辉, 等.混凝土HJC、RHT本构模型的失效强度参数[J].高压物理学报, 2011, 25(1):15-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7151809

    ZHANG Ruoqi, DING Yuqing, TANG Wenhui, et al. The failure strength parameters of HJC and RHT concrete constitutive models[J]. Chinese Journal of High Pressure Physics, 2011, 25(1):15-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7151809
    [9]
    林华令, 丁育青, 汤文辉.混凝土侵彻数值模拟的影响因素[J].爆炸与冲击, 2013, 33(4):425-429. doi: 10.3969/j.issn.1001-1455.2013.04.015

    LIN Hualing, DING Yuqing, TANG Wenhui. Factors influencing numerical simulation of concrete penetration[J]. Explosion and Shock Waves, 2013, 33(4):425-429. doi: 10.3969/j.issn.1001-1455.2013.04.015
    [10]
    LEPPÄNEN J. Concrete subjected to projectile and fragment impacts:Modelling of crack softening and strain rate dependency in tension[J]. International Journal of Impact Engineering, 2006, 32(11):1828-1841. doi: 10.1016/j.ijimpeng.2005.06.005
    [11]
    ROSENBERG Z, DEKEL E. The deep penetration of concrete targets by rigid rods-revisited[J]. International Journal of Protective Structures, 2010, 1(1):125-144. doi: 10.1260/2041-4196.1.1.125
    [12]
    CHEN Xiaowei, LI Jicheng. Analysis on the resistive force in penetration of a rigid projectile[J]. Defence Technology, 2014, 10(3):285-293. doi: 10.1016/j.dt.2014.06.007
    [13]
    FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1992, 15(4):395-405. http://cn.bing.com/academic/profile?id=1564dbbac134b4b6b0dbf13003ad9c56&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (5400) PDF downloads(148) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return