Volume 38 Issue 5
Jul.  2018
Turn off MathJax
Article Contents
ZHANG Weiqi, XU Zejian, SUN Zhongyue, TONG Yi, HUANG Fenglei. Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates[J]. Explosion And Shock Waves, 2018, 38(5): 1137-1144. doi: 10.11883/bzycj-2017-0107
Citation: ZHANG Weiqi, XU Zejian, SUN Zhongyue, TONG Yi, HUANG Fenglei. Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates[J]. Explosion And Shock Waves, 2018, 38(5): 1137-1144. doi: 10.11883/bzycj-2017-0107

Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates

doi: 10.11883/bzycj-2017-0107
  • Received Date: 2017-04-01
  • Rev Recd Date: 2017-09-11
  • Publish Date: 2018-09-25
  • Dynamic shear properties and failure mechanism of Ti-6Al-4V were studied at strain rates in excess of 104 s-1, with a new loading method based on the split Hopkinson pressure bar (SHPB) technique. The shear stress-shear strain curves and failure parameters of Ti-6Al-4V were acquired in a wide range of high shear strain rates. It is found that the flow stress of the material shows an obvious strain rate hardening effect. With the increase of strain rates, the failure stress of the material increases gradually, while the failure strain decreases. The loading process was modeled by ABAQUS/Explicit software. The results show that the shear zone material is substantially in the state of plane shear. The tested stress-strain curves have good agreement with the simulated results. The fracture surface examination shows that with the increase of strain rate, the failure of Ti-6Al-4V is closely related to the different behaviors of dimples, and it indicates an evolution process from dimples and tensile dimples to steps and river patterns. The fracture analyses show that the failure mode of the material is mainly ductile fracture.
  • loading
  • [1]
    BAI Y, DODD B. Adiabatic shear localization: Occurrence, theories and applications[J]. Oxford University Press, 1992.
    [2]
    LIAO S C, DUFFY J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(11):2201-2231. doi: 10.1016/S0022-5096(98)00044-1
    [3]
    RITTEL D, WANG Z G. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti-6Al-4V alloys[J]. Mechanics of Materials, 2008, 40(8):629-635. doi: 10.1016/j.mechmat.2008.03.002
    [4]
    PEIRS J, VERLEYSEN P, DEGRIECK J, et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V[J]. International Journal of Impact Engineering, 2010, 37(6):703-714. doi: 10.1016/j.ijimpeng.2009.08.002
    [5]
    CHICHILI D R, RAMESH K T, HEMKER K J. Adiabatic shear localization in α-titanium:Experiments, modeling and microstructural evolution[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(8):1889-1909. doi: 10.1016/j.jmps.2004.02.013
    [6]
    RITTEL D, LEE S, RAVICHANDRAN G. A shear-compression specimen for large strain testing[J]. Experimental Mechanics, 2002, 42(1):58-64. doi: 10.1007/BF02411052
    [7]
    DOROGOY A, RITTEL D, GODINGER A. A shear-tension specimen for large strain testing[J]. Experimental Mechanics, 2016, 56(3):437-449. doi: 10.1007/s11340-015-0106-1
    [8]
    林艺生, 傅学金, 杨月诚.30CrMnSiA绝热剪切带显微观察与分析[J].兵器材料科学与工程, 2010, 33(6):59-61. doi: 10.3969/j.issn.1004-244X.2010.06.018

    LIN Yisheng, FU Xuejin, YANG Yuecheng. Microstructure observation and analysis of adiabatic shear band in 30CrMnSiA steel[J]. Ordnance Material Science and Engineering, 2010, 33(6):59-61. doi: 10.3969/j.issn.1004-244X.2010.06.018
    [9]
    MEYERS M A, CHEN Y J, MARQUIS F D S, et al. High-strain, high-strain-rate behavior of tantalum[J]. Metallurgical and Materials Transactions:A, 1995, 26(10):2493-2501. doi: 10.1007/BF02669407
    [10]
    魏志刚, 李永池, 李剑荣, 等.冲击载荷作用下钨合金材料绝热剪切带形成机理[J].金属学报, 2000, 36(12):1263-1268. doi: 10.3321/j.issn:0412-1961.2000.12.008

    WEI Zhigang, LI Yongchi, LI Jianrong, et al. Formation mechanism of adiabatic shear band in tungsten heavy alloys[J]. Acta Metallurgica Sinica, 2000, 36(12):1263-1268. doi: 10.3321/j.issn:0412-1961.2000.12.008
    [11]
    ROGERS H C, SHASTRY C V. Shock waves and high-strain-rate phenomena in metals[M]. Plenum Press, 1981:683.
    [12]
    FERGUSON W G, HAUSER F E, DORN J E. Dislocation damping in zinc single crystals[J]. British Journal of Applied Physics, 1967, 18(18):411-417. http://adsabs.harvard.edu/abs/1967BJAP...18..411F
    [13]
    刘新芹, 谭成文, 张静, 等.应力状态对Ti-6Al-4V绝热剪切敏感性的影响[J].稀有金属材料与工程, 2008, 37(9):1522-1525. doi: 10.3321/j.issn:1002-185X.2008.09.004

    LIU Xinqin, TAN Chengwen, ZHANG Jing, et al. Influence of stress-state on adiabatic shear sensitivity of Ti-6Al-4V[J]. Rare Metal Materials and Engineering, 2008, 37(9):1522-1525. doi: 10.3321/j.issn:1002-185X.2008.09.004
    [14]
    ZHANG Jing, TAN Chengwen, REN Yu, et al. Adiabatic shear fracture in Ti-6Al-4V alloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(11):2396-2401. doi: 10.1016/S1003-6326(11)61026-1
    [15]
    苏冠龙, 龚煦, 李玉龙, 等.TC4在动态载荷下的剪切行为研究[J].爆炸与冲击, 2015, 35(4):527-535. http://www.bzycj.cn/CN/abstract/abstract9496.shtml

    SU Guanlong, GONG Xu, LI Yulong, et al. Shear behavior of TC4 alloy under dynamic loading[J]. Explosion and Shock Waves, 2015, 35(4):527-535. http://www.bzycj.cn/CN/abstract/abstract9496.shtml
    [16]
    LANDAU P, VENKERT A, RITTEL D. Microstructural aspects of adiabatic shear failure in annealed Ti6AL4V[J]. Metallurgical and Materials Transactions:A, 2010, 41(2):389-396. doi: 10.1007/s11661-009-0098-5
    [17]
    GUO Yazhou, LI Yulong. A novel approach to testing the dynamic shear response of Ti-6Al-4V[J]. Acta Mechanica Solida Sinica, 2012, 25(3):299-311. doi: 10.1016/S0894-9166(12)60027-5
    [18]
    LONGÈRE P, DRAGON A. Dynamic vs. quasi-static shear failure of high strength metallic alloys:Experimental issues[J]. Mechanics of Materials, 2015, 80:203-218. doi: 10.1016/j.mechmat.2014.05.001
    [19]
    许泽建, 丁晓燕, 张炜琪, 等.一种用于材料高应变率剪切性能测试的新型加载技术[J].力学学报, 2016, 48(3):654-659. http://d.old.wanfangdata.com.cn/Periodical/lxxb201603015

    XU Zejian, DING Xiaoyan, ZHANG Weiqi, et al. A new loading technique for measuring shearing properties of materials under high strain rates[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):654-659. http://d.old.wanfangdata.com.cn/Periodical/lxxb201603015
    [20]
    XU Zejian, DING Xiaoyan, ZHANG Weiqi, et al. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique[J]. International Journal of Impact Engineering, 2017, 101:90-104. doi: 10.1016/j.ijimpeng.2016.11.012
    [21]
    NEMAT-NASSER S. Hopkinson techniques for dynamic recovery experiments[J]. Proceedings of the Royal Society:A, 1991, 435:371-391. doi: 10.1098/rspa.1991.0150
    [22]
    SEO S, MIN O, YANG H. Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique[J]. International Journal of Impact Engineering, 2005, 31(6):735-754. doi: 10.1016/j.ijimpeng.2004.04.010
    [23]
    钟群鹏, 赵子华.断口学[M].北京:高等教育出版社, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (5727) PDF downloads(126) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return