Volume 38 Issue 5
Jul.  2018
Turn off MathJax
Article Contents
ZHANG Zhen, WANG Yonggang. Measurement system for split Hopkinson pressure bar apparatus based on laser interferometry technique[J]. Explosion And Shock Waves, 2018, 38(5): 1165-1171. doi: 10.11883/bzycj-2017-0116
Citation: ZHANG Zhen, WANG Yonggang. Measurement system for split Hopkinson pressure bar apparatus based on laser interferometry technique[J]. Explosion And Shock Waves, 2018, 38(5): 1165-1171. doi: 10.11883/bzycj-2017-0116

Measurement system for split Hopkinson pressure bar apparatus based on laser interferometry technique

doi: 10.11883/bzycj-2017-0116
  • Received Date: 2017-04-11
  • Rev Recd Date: 2017-05-17
  • Publish Date: 2018-09-25
  • Conventional measurements in SHPB are based on recording the strain profiles on the incident and transmitted bars with strain gauges, and require good adhesion between the strain gauge and bars, which strongly depends on the skill of an operator. In this paper, the all fiber laser interferometry technique with two fiber focusers based on the principle of Doppler frequency shift is used to establish a non-contact optical measurement system for SHPB. The monitoring objective of the new measurement system is the particle velocity that can be easily converted into strain and stress by means of stress wave propagation. For the ductile and brittle materials, two measurement methods by using of laser normal irradiation and laser obliqueirradiation were proposed, respectively. Taking aluminum alloy and PZT ceramics as examples, the validity of the two optical measurement systems was verified by comparing with the traditional SHPB measurement results and the DIC measurement results. The laser interferometry technique has several advantages over traditional strain gauge measurements. It is non-calibrating, high repeatable and high reliability, which is helpful to realize the standardization of SHPB measurement system.
  • loading
  • [1]
    KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society of London:B, 1949, 62(1):676-700. http://www.emeraldinsight.com/servlet/linkout?suffix=b11&dbid=16&doi=10.1108%2F13552541211212131&key=10.1088%2F0370-1301%2F62%2F11%2F302
    [2]
    李玉龙, 郭伟国, 徐绯, 等.Hopkinson压杆技术的推广应用[J].爆炸与冲击, 2006, 26(5):385-394. doi: 10.3321/j.issn:1001-1455.2006.05.001

    LI Yulong, GUO Weiguo, XU Fei, et al. The extended application of Hopkinson bar technique[J]. Explosion and Shock Waves, 2006, 26(5):385-394. doi: 10.3321/j.issn:1001-1455.2006.05.001
    [3]
    陈荣, 卢芳云, 林玉亮, 等.分离式Hopkinson压杆实验技术研究进展[J].力学进展, 2009, 39(5):576-587. doi: 10.3321/j.issn:1000-0992.2009.05.007

    CHEN Rong, LU Fangyun, LIN Yuliang, et al. A critical review of split Hopkinson pressure bar technique[J]. Advances in Mechanics, 2009, 39(5):576-587. doi: 10.3321/j.issn:1000-0992.2009.05.007
    [4]
    胡时胜, 王礼立, 宋力, 等.Hopkinson压杆技术在中国的发展回顾[J].爆炸与冲击, 2014, 34(6):641-657. http://www.bzycj.cn/CN/abstract/abstract9373.shtml

    HU Shisheng, WANG Lili, SONG Li, et al. Review of the development of Hopkinson pressure bar technique in China[J]. Explosion and Shock Waves, 2014, 34(6):614-657. http://www.bzycj.cn/CN/abstract/abstract9373.shtml
    [5]
    CHEN W, SONG B. Split Hopkinson (Kolsky) bar:Design, testing and application[M]. New York:Springer, 2011.
    [6]
    IWAMOTO T, YOKOYAMA T. Effects of radial inertia and end friction in specimen geometry in split Hopkinson pressure bar tests:A computational study[J]. Mechanics of Materials, 2012, 51:97-109. doi: 10.1016/j.mechmat.2012.04.007
    [7]
    LU F Y, LI Y L, WANG X Y, et al. A theoretical analysis about the influence of interfacial friction in SHPB tests[J]. International Journal of Impact Engineering, 2015, 79:95-101. doi: 10.1016/j.ijimpeng.2014.10.008
    [8]
    YANG L M, SHIM V P W. An analysis of stress uniformity in split Hopkinson bar test specimens[J]. International Journal of Impact Engineering, 2005, 31(2):129-150. doi: 10.1016/j.ijimpeng.2003.09.002
    [9]
    LIU J, SALETTI D, PATTOFATTO S, et al. Impact testing of polymeric foam using Hopkinson bars and digital image analysis[J]. Polymer Testing, 2014, 36:101-109. doi: 10.1016/j.polymertesting.2014.03.014
    [10]
    SATO K, YU Q, HIRAMOTO J, et al. A method to investigate strain rate effects on necking and fracture behaviors of advanced high-strength steels using digital imaging strain analysis[J]. International Journal of Impact Engineering, 2015, 75:11-26. doi: 10.1016/j.ijimpeng.2014.07.001
    [11]
    申海艇, 蒋招绣, 王贝壳, 等.基于超高速相机的数字图像相关性全场应变分析在SHTB实验中的应用[J].爆炸与冲击, 2017, 37(1):15-20. http://www.bzycj.cn/CN/abstract/abstract9680.shtml

    SHEN Haiting, JIANG Zhaoxiu, WANG Beike, et al. Full field strain measurement in split Hopkinson tension bar experiments by using ultra-high-speed camera with digital image correlation[J]. Explosion and Shock Waves, 2017, 37(1):15-20. http://www.bzycj.cn/CN/abstract/abstract9680.shtml
    [12]
    RAMESH K T, NARASIMHAN S. Finite deformations and the dynamic measurement of radial strains in compression Kolsky bar experiments[J]. International Journal of Solids and Structures, 1996, 33(25):3723-3738. doi: 10.1016/0020-7683(95)00206-5
    [13]
    LI Y, RAMESH K T. An optical technique for measurement of material properties in the tension Kolsky bar[J]. International Journal of Impact Engineering, 2007, 34(4):784-798. doi: 10.1016/j.ijimpeng.2005.12.002
    [14]
    BARKER L M, HOLLENBACK R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11):4469-4675. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5098032
    [15]
    WENG Jidong, TAN Hua, HU Shaolou, et al. New all-fiber velocimeter[J]. Review of Scientific Instruments, 2005, 76(9):093301. doi: 10.1063/1.2008989
    [16]
    WU X, WANG X, WEI Y, et al. An experimental method to measure dynamic stress-strain relationship of materials at high strain rates[J]. International Journal of Impact Engineering, 2014, 69(4):149-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232649508
    [17]
    LEA L J, JARDINE A P. Application of photon Doppler velocimetry to direct impact Hopkinson pressure bars[J]. Review of Scientific Instruments, 2016, 87(2):023101. doi: 10.1063/1.4940935
    [18]
    王礼立.应力波基础[M].2版.北京:国防工业出版社, 2005.
    [19]
    翁继东, 谭华, 陈金宝, 等.光纤任意反射面速度干涉系统在高压物理中的应用[J].高压物理学报, 2004, 18(3):225-230. doi: 10.3969/j.issn.1000-5773.2004.03.006

    WENG Jidong, TAN Hua, CHEN Jinbao, et al. Application of fiber velocity interferometer system for any reflector in high pressure physics[J]. Chinese Journal of High Pressure Physics, 2004, 18(3):225-230. doi: 10.3969/j.issn.1000-5773.2004.03.006
    [20]
    杨军, 王克逸, 徐海斌, 等.光纤位移干涉仪的研制及其在Hopkinson压杆实验中的应用[J].红外与激光工程, 2013, 42(1):102-107. doi: 10.3969/j.issn.1007-2276.2013.01.019

    YANG Jun, WANG Keyi, XU haibin, et al. Development of an optical-fiber displacement interferometer and its application in Hopkinson pressure bar experiment[J]. Infrared and Laser Engineering, 2013, 42(1):102-107. doi: 10.3969/j.issn.1007-2276.2013.01.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (5253) PDF downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return