Volume 38 Issue 6
Sep.  2018
Turn off MathJax
Article Contents
XU Xiaohui, QIU Yanyu, WANG Mingyang, SHAO Luzhong. Development of the testing apparatus for modeling large equivalent underground cratering explosions[J]. Explosion And Shock Waves, 2018, 38(6): 1333-1343. doi: 10.11883/bzycj-2017-0144
Citation: XU Xiaohui, QIU Yanyu, WANG Mingyang, SHAO Luzhong. Development of the testing apparatus for modeling large equivalent underground cratering explosions[J]. Explosion And Shock Waves, 2018, 38(6): 1333-1343. doi: 10.11883/bzycj-2017-0144

Development of the testing apparatus for modeling large equivalent underground cratering explosions

doi: 10.11883/bzycj-2017-0144
  • Received Date: 2017-05-02
  • Rev Recd Date: 2017-09-18
  • Publish Date: 2018-11-25
  • Aiming at solving the difficult problem of simulating the ejection crater and loose bulging under underground explosion, a method of vacuum chamber for simulating underground explosion effects is presented based on the similarity theory, and a testing apparatus is developed. The core assemblies of this apparatus consist of pressure vessel, fast-open door enclosed mechanism, explosive source simulation system with accurate burst control, vacuum pump air-removal system and instrumentation system. This set of apparatus could model the underground explosions with the equivalent of 0.1-100 kt TNT and the buried depth of 20-400 m, and it also could simulate the large-scale explosions with different charge schemes under complicated geological conditions. The typical modeling experimental results show that the apparatus is accurately adjusted and technically controllable, and that the experimental results are reliable. The testing apparatus for large-scale underground cratering explosions could provide assistances for both the damage effect analysis of the ejection explosions subject to earth-penetrating nuclear weapons and the prediction and forecast of the large-scale engineering blasting, and fill the shot of centrifuge cratering experiment which cannot model the large-scale underground explosions.
  • loading
  • [1]
    马立秋, 张建民, 张武.爆炸离心模型试验研究进展与展望[J].岩土力学, 2011, 32(9):2827-2833. doi: 10.3969/j.issn.1000-7598.2011.09.044

    MA Liqiu, ZHANG Jianmin, ZHANG Wu. Development and prospect for centrifugal blasting modeling[J]. Rock and Soil Mechanics, 2011, 32(9):2827-2833. doi: 10.3969/j.issn.1000-7598.2011.09.044
    [2]
    范一锴, 陈祖煜, 梁向前, 等.砂中爆炸成坑的离心模型试验分析方法比较[J].岩土力学与工程学报, 2011(suppl 2):4123-4128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201104561938

    FAN Yikai, CHEN Zuyu, LIANG Xiangqian, et al. Comparison of three methods for geotechnical centrifuge model tests of explosion cratering in sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2011(suppl 2):4123-4128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201104561938
    [3]
    岳松林, 邱艳宇, 王德荣, 等.岩石中爆炸成坑效应的模型试验方法及对比分析[J].岩石力学与工程学报, 2014, 33(9):1925-1932. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201409026

    YUE Songlin, QIU Yanyu, WANG Derong, et al. Modeling experiment methods for crating effects of explosions in rocks and comparative analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9):1925-1932. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201409026
    [4]
    SADOVSKⅡ M A, ADUSHKIN V V, RODIONOV V N, et al. A method of modeling large cratering explosions[J]. Combustion, Explosion, and Shock Waves, 1967, 3(1):73-79. doi: 10.1007/BF00741616
    [5]
    ADUSHKIN V V, PERNIK L M. Large-scale blasting-down in opening-up the tyrnyauz deposit[J]. Journal of Mining Science, 1976, 12(4):381-384. doi: 10.1007/BF02497368
    [6]
    ADUSHKIN V V, PERNIK L M. Characteristics of the formation of subsidence craters[J]. Fizika Goreniya I Vzryva, 1972, 8(4):541-552. doi: 10.1007/BF00741202
    [7]
    Vakhrameev Y S. Physical principles of modeling excavation explosions[J]. Combustion, Explosion, and Shock Waves, 1995, 31(1):123-130. https://www.sciencedirect.com/science/article/pii/S1524070300905368
    [8]
    Blinov I M, Vakhrameev Y S. Method of modeling of large excavation explosions by microexplosions of explosive[J]. Combustion, Explosion, and Shock Waves, 1995, 31(2):102-109. https://www.researchgate.net/publication/239381278_A_method_of_modeling_large_cratering_explosions
    [9]
    Blinov I M. Mechanism and conditions of hill formation at the crater bottom in an excavation explosion[J]. Combustion, Explosion, and Shock Waves, 2004, 40(6):679-685. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ022076828
    [10]
    谈庆明.量纲分析[M].合肥:中国科学技术大学出版社, 2005:9-18.
    [11]
    钱七虎.大型抛掷爆破中重力的影响[J].解放军理工大学学报(自然科学版), 2010, 11(2):103-105. http://d.old.wanfangdata.com.cn/Periodical/jfjlgdxxb201002001

    QIAN Qihu. Influence of gravity in large-scale throw blasting[J]. Journal of PLA University of Science and Technology (Natural Science), 2010, 11(2):103-105. http://d.old.wanfangdata.com.cn/Periodical/jfjlgdxxb201002001
    [12]
    CHIKOSHA S, MAHLATJI L M, CHIKWANDA H K. Characterisation of titanium powder flow, shear and bulk properties using the FT4 powder rheometer[J]. Advanced Materials Research, 2014, 1019:218-224. https://www.scientific.net/AMR.1019.218
    [13]
    ADUSHKIN V V, SPIVAK A. Underground explosions: WGC-2015-03[R]. 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (5123) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return