Volume 38 Issue 6
Sep.  2018
Turn off MathJax
Article Contents
TONG Xin, LI Long, MA Sai'er, XU Jinsheng, ZHENG Ya. Heat dissipation of HTPB propellant under impact loading[J]. Explosion And Shock Waves, 2018, 38(6): 1255-1261. doi: 10.11883/bzycj-2017-0219
Citation: TONG Xin, LI Long, MA Sai'er, XU Jinsheng, ZHENG Ya. Heat dissipation of HTPB propellant under impact loading[J]. Explosion And Shock Waves, 2018, 38(6): 1255-1261. doi: 10.11883/bzycj-2017-0219

Heat dissipation of HTPB propellant under impact loading

doi: 10.11883/bzycj-2017-0219
  • Received Date: 2017-06-22
  • Rev Recd Date: 2017-09-26
  • Publish Date: 2018-11-25
  • In this study, using a split Hopkinson pressure bar (SHPB), we assembled a fast-responding infrared temperature measurement system, capable of simultaneously obtaining the superficial temperature change of the HTPB propellant in impact experiments, to investigate the energy dissipation pattern of HTPB propellant under impact loading. The results show that the HTPB propellant exhibited visco-hyper elastic properties, and experienced significant temperature rise in high speed deformation. Based on the visco-hyper elastic constitutive model, we also introduced a heat softening function to more accurately describe the thermodynamic response of the HTPB propellant at high strain rates. Our results provide support for the analysis of thermo mechanical coupling of the solid composite propellant under impact loading.
  • loading
  • [1]
    JACKSON T L, BUCKMASTER J. Heterogeneous propellant combustion[J]. AIAA Journal, 2002, 40(6):1122-1130. DOI: 10.2514/2.1761.
    [2]
    CAI W D, THAKRE P, YANG V. A model of AP/HTPB composite propellant combustion in rocket-motor environments[J]. Combustion Science and Technology, 2008, 180(12):2143-2169. DOI: 10.1080/00102200802414915.
    [3]
    SUN C, XU J, CHEN X, et al. Strain rate and temperature dependence of the compressive behavior of a composite modified double-base propellant[J]. Mechanics of Materials, 2015, 89:35-46. DOI: 10.1016/j.mechmat.2015.06.002.
    [4]
    TONG X, CHEN X, XU J, et al. Excitation of thermal dissipation of solid propellants during the fatigue process[J]. Materials and Design, 2017, 128:47-55. DOI: 10.1016/j.matdes.2017.04.088.
    [5]
    卢芳云, 陈荣, 林玉亮, 等.霍普金森杆实验技术[M].北京:高等教育出版社, 2013.
    [6]
    卢芳云, 林玉亮, 王晓燕, 等.含能材料的高应变率响应实验[J].火炸药学报, 2006, 29(1):1-4. DOI: 10.14077/j.issn.1007-7812.2006.01.001.

    LU Fangyun, LIN Yuliang, WANG Xiaoyan, et al. Experimental investigation on dynamic response of energetic materials at high strain rate[J]. Chinese Journal of Explosives and Propellants, 2006, 29(1):1-4. DOI: 10.14077/j.issn.1007-7812.2006.01.001.
    [7]
    KENDALL M J, FROUD R F, SIVIOUR C R. Novel temperature measurement method and thermodynamic investigations of amorphous polymers during high rate deformation[J]. Polymer, 2014, 55(10):2514-2522. DOI: 10.1016/j.polymer.2014.03.058.
    [8]
    RITTEL D, BHATTACHARYYA A, POON B, et al. Thermomechanical characterization of pure polycrystalline tantalum[J]. Materials Science and Engineering:A, 2007, 447(1):65-70. DOI: 10.1016/j.msea.2006.10.064.
    [9]
    刘永贵, 唐志平, 崔世堂.冲击载荷下瞬态温度的实时测量方法[J].爆炸与冲击, 2014, 34(4):471-475. DOI: 10.11883/1001-1455(2014)04-0471-05.

    LIU Yonggui, TANG Zhiping, CUI Shitang. Real-time measuring methods for transient temperature under shock loading[J]. Explosion and Shock Waves, 2014, 34(4):471-475. DOI: 10.11883/1001-1455(2014)04-0471-05.
    [10]
    PAN Z, XIONG J, LIANG S, et al. Transient deformation and heat generation of solid polyurethane under impact compression[J]. Polymer Testing, 2017, 61:269-279. DOI: 10.1016/j.polymertesting.2017.05.033.
    [11]
    PAN Z, SUN B, SHIM V P W, et al. Transient heat generation and thermo-mechanical response of epoxy resin under adiabatic impact compressions[J]. International Journal of Heat and Mass Transfer, 2016, 95:874-889. DOI: 10.1016/j.ijheatmasstransfer.2015.12.072.
    [12]
    李涛, 傅华, 李克武, 等.单轴压缩下2种PBX炸药的动态变形损伤及其温升效应[J].爆炸与冲击, 2017, 37(1):120-125. DOI: 10.11883/1001-1445(2017)01-0120-06.

    LI Tao, FU Hua, LI Kewu, et al. Deformation with damage and temperature-rise of two types of plastic-bonded explosives under uniaxial compression[J]. Explosion and Shock Waves, 2017, 37(1):120-125. DOI: 10.11883/1001-1445(2017)01-0120-06.
    [13]
    RITTEL D, WANG Z G. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys[J]. Mechanics of Materials, 2008, 40(8):629-635. DOI: 10.1115/esda2008-59141.
    [14]
    GARG M, MULLIKEN A D, BOYCE M C. Temperature rise in polymeric materials during high rate deformation[J]. Journal of Applied Mechanics, 2008, 75(1):148-155. DOI: 10.1115/1.2745388.
    [15]
    LI Z, LAMBROS J. Strain rate effects on the thermomechanical behavior of polymers[J]. International Journal of Solids and Structures, 2001, 38(20):3549-3562. DOI: 10.1016/s0020-7683(00)00223-7.
    [16]
    CHEN W W, SONG B. Split Hopkinson (Kolsky) bar:Design, testing and applications[M]. Springer Science and Business Media, 2010.
    [17]
    LU F, LIN Y, WANG X, et al. A theoretical analysis about the influence of interfacial friction in SHPB tests[J]. International Journal of Impact Engineering, 2015, 79:95-101. DOI: 10.1016/j.ijimpeng.2014.10.008.
    [18]
    杨世铭, 陶文铨.传热学[M].4版.北京:高等教育出版社, 2006.
    [19]
    HODOWANY J. On the conversion of plastic work into heat[D]. California Institute of Technology, 1997.
    [20]
    龙兵, 常新龙, 张有宏, 等.高应变率下HTPB推进剂动态断裂性能研究[J].推进技术, 2015, 36(3):471-475. DOI: 10.13675/j.cnki.tjjs.2015.03.022.

    LONG Bing, CHANG Xinlong, ZHANG Youhong, et al. Study on dynamic fracture properties of HTPB propellant under high strain rate[J]. Journal of Propulsive Technology, 2015, 36(3):471-475. DOI: 10.13675/j.cnki.tjjs.2015.03.022.
    [21]
    JIANG J, XU J S, ZHANG Z S, et al. Rate-dependent compressive behavior of EPDM insulation:Experimental and constitutive analysis[J]. Mechanics of Materials, 2016, 96:30-38. DOI: 10.1016/j.mechmat.2016.02.003.
    [22]
    XU J, CHEN X, WANG H, et al. Thermo-damage-viscoelastic constitutive model of HTPB composite propellant[J]. International Journal of Solids and Structures, 2014, 51(18):3209-3217. DOI: 10.1016/j.ijsolstr.2014.05.024.
    [23]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. 1983: 541-547.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (4528) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return