Citation: | WANG Xin, JIANG Jianwei, WANG Shuyou, MEN Jianbing. Critical detonation velocity calculation model of cylindrical covered charge impacted by fragment[J]. Explosion And Shock Waves, 2019, 39(1): 012302. doi: 10.11883/bzycj-2017-0271 |
[1] |
陈海利, 蒋建伟, 门建兵.破片对带铝壳炸药的冲击起爆数值模拟研究[J].高压物理学报, 2006, 20(1):109-112. doi: 10.3969/j.issn.1000-5773.2006.01.021
CHEN Haili, JIANG Jianwei, MEN Jianbing. Numerical simulation of fragment impacting on charge with aluminum shell[J].Chinese Journal of High Pressure Physics, 2006, 20(1):109-112. doi: 10.3969/j.issn.1000-5773.2006.01.021
|
[2] |
李小笠, 屈明, 路中华, 等.三种破片对带壳炸药冲击起爆能力的数值分析[J].弹道学报, 2009, 21(4):72-75. http://d.old.wanfangdata.com.cn/Periodical/ddxb200904018
LI Xiaoli, QU Ming, LU Zhonghua, et al. Numerical analysis of impact initiation ability of three kinds of fragments on shell explosive[J]. Journal of Ballistics, 2009, 21(4):72-75. http://d.old.wanfangdata.com.cn/Periodical/ddxb200904018
|
[3] |
童宗保, 王金相, 彭楚才, 等.预制破片对屏蔽炸药冲击引爆研究[J].科学技术与工程.2013, 14(7):173-177. DOI: 10.3969/j.issn.1671-1815.2014.07.038
TONG Zongbao, WANG Jinxiang, PENG Chucai, et al. Study on shock initiation of shielded explosive by prefabricated fragment[J]. Science Technology and Engineering, 2013, 14(7):173-177. DOI: 10.3969/j.issn.1671-1815.2014.07.038
|
[4] |
HELD M. Initiation phenomenon with shaped charge jets[C]//Proceedings of the 9th International Detonation Symposium. Portland, Oregon, USA, 1989: 1416-1426.
|
[5] |
ROSLUND L A. Initiation of warhead fragments Ⅰ: Normal impacts[R]. Naval Surface Weapons Center, White Oak, 1973.
|
[6] |
LLOYD R M. Conventional warhead systems physics and engineering design[M]. Virginia:American Insititute of Aeronautics and Astronautics, Inc., 1998:502-504.
|
[7] |
章冠华, 陈大年.凝聚炸药起爆动力学[M].北京:国防工业出版社, 1991.
|
[8] |
张先锋, 赵有守, 陈惠武.射弹冲击引爆带壳炸药临界条件[J].弹道学报, 2006, 18(4)57-59. doi: 10.3969/j.issn.1004-499X.2006.04.016
ZHANG Xianfeng, ZHAO Youshou, CHEN Huiwu. The critical condition of shelled explosive initiated by projectile[J]. Journal of Ballistics, 2006, 18(4)57-59. doi: 10.3969/j.issn.1004-499X.2006.04.016
|
[9] |
HELD M. Initiation criteria of high explosive attacked with projectiles or jet densities[J]. Propellants, Explosives, Pyrotechnics, 1996, 21(5):235-237. doi: 10.1002/(ISSN)1521-4087
|
[10] |
方青, 卫玉章, 张克明.射弹倾斜撞击带盖板炸药引发爆轰的条件[J].爆炸与冲击, 1997, 17(2):153-158. http://www.bzycj.cn/CN/abstract/abstract10455.shtml
FANG Qing, WEI Yuzhang, ZHANG Keming. On the projectile oblique-impact initiation conditions for explosive covered with a plate[J]. Explosion and Shock Waves, 1997, 17(2):154-158. http://www.bzycj.cn/CN/abstract/abstract10455.shtml
|
[11] |
陈卫东, 张忠, 刘家良, 等.破片对屏蔽炸药冲击起爆的数值模拟与分析[J].兵工学报, 2009, 30(9):1187-1191. doi: 10.3321/j.issn:1000-1093.2009.09.007
CHEN Weidong, ZHANG Zhong, LIU Jialiang, et al. Numerical simulation and analysis of shock initiation of shielded explosive by fragment[J]. Acta Armamentarii, 2009, 30(9):1187-1191. doi: 10.3321/j.issn:1000-1093.2009.09.007
|
[12] |
杜茂华, 王伟力, 黄勇, 等.舰载超近程反导弹药冲击引爆战斗部的研究[J].工程爆破, 2012, 18(2):14-17.DOI: 10.3969/j.issn.1006-7051.2012.02.004.
DU Maohua, WANG Weili, HUANG Yong, et al. Research on impacting and igniting warhead by super close-in anti-missile ammunition on board[J]. Engineering Blasting, 2012, 18(2):14-17. DOI: 10.3969/j.issn.1006-7051.2012.02.004.
|
[13] |
王昕, 蒋建伟, 王树有, 等.钨球对柱面带壳装药的冲击起爆数值模拟研究[J].兵工学报, 2017, 38(8):1498-1505.DOI: 10.3969/j.issn.1000-1093.2017.08.006.
WANG Xin, JIANG Jianwei, WANG Shuyou, et al. Numerical simulation on the initiation of cylindrical covered charge impacted by tungsten sphere fragment[J]. Acta Armamentarii, 2017, 38(8):1498-1505. DOI: 10.3969/j.issn.1000-1093.2017.08.006.
|
[14] |
梁争峰, 袁宝慧.破片撞击起爆屏蔽B炸药的数值模拟和实验[J].火炸药学报, 2006, 29(1):5-9. doi: 10.3969/j.issn.1007-7812.2006.01.002
LIANG Zhengfeng, YUAN Baohui. Numerical simulation and experimental study of the initiation of shielded composition b impacted by fragment[J]. Chinese Journal of Explosives and Propellants, 2006, 29(1):5-9. doi: 10.3969/j.issn.1007-7812.2006.01.002
|
[15] |
LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosive[J]. Physics of Fluids, 1980, 23(12):2362. doi: 10.1063/1.862940
|
[16] |
IZADIFARD R A, FOROUTAN M. Blastwave parameters assessment at different altitude using numerical simulation[J]. Turkish Journal of Engineering and Enviromental Sciences, 2010, 34(1):25-41. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216335761/
|
[1] | KANG Haobo, JIANG Jianwei, PENG Jiacheng, LI Mei. Simulation analysis on the initiation mechanism of the explosive charge covered with a thick shell impacted by a rod projectile[J]. Explosion And Shock Waves, 2022, 42(1): 013303. doi: 10.11883/bzycj-2021-0111 |
[2] | WU Junying, LI Yaojiang, YANG Lijun, LIU Jiaxi, WU Jiaojiao, ZHANG Xiaozhou, CHEN Lang. Shock initiation characteristics of four-component HTPB solid propellant containing RDX[J]. Explosion And Shock Waves, 2021, 41(8): 082301. doi: 10.11883/bzycj-2020-0350 |
[3] | PANG Songlin, CHEN Xiong, XU Jinsheng, WANG Yongping. Impact initiation of a solid-rocket engine by a shaped-charge jet[J]. Explosion And Shock Waves, 2020, 40(8): 082101. doi: 10.11883/bzycj-2019-0469 |
[4] | GUO Chun, GUO Shangsheng, QIAN Jianping, GU Wenbin. Numerical simulation on shock critical initiation velocity of cylindrical covered charge by multiple fragment impacts[J]. Explosion And Shock Waves, 2020, 40(6): 062301. doi: 10.11883/bzycj-2019-0391 |
[5] | BAI Zhiling, DUAN Zhuoping, WEN Lijing, ZHANG Zhenyu, OU Zhuocheng, HUANG Fenglei. A multi-component Duan-Zhang-Kim mesoscopic reaction rate model for shock initiation of multi-component PBX explosives[J]. Explosion And Shock Waves, 2019, 39(11): 112101. doi: 10.11883/bzycj-2018-0410 |
[6] | LIU Haiqing, DUAN Zhuoping, BAI Zhiling, WEN Lijing, OU Zhuocheng, HUANG Fenglei. Experimental research on effects of porosity on shock initiation of PBX explosive[J]. Explosion And Shock Waves, 2019, 39(7): 072302. doi: 10.11883/bzycj-2018-0226 |
[7] | ZHANG Tao, LIU Yusheng, GAO Zhipeng, YANG Jia, LIU Yi, GU Yan. Numerical simulation of the interlayer effects for fragments impacting steel-covered charge[J]. Explosion And Shock Waves, 2018, 38(6): 1241-1246. doi: 10.11883/bzycj-2017-0154 |
[8] | Pi Zhengdi, Chen Lang, Liu Danyang, Wu Junying. Shock initiation of CL-20 based explosives[J]. Explosion And Shock Waves, 2017, 37(6): 915-923. doi: 10.11883/1001-1455(2017)06-0915-09 |
[9] | Zhang Menghua, Wang Pengxin, Yu Yonggang, Ruan Wenjun, Wang Jian, Ning Huijun. Numerical simulation of the delay time of impact initiated projectile[J]. Explosion And Shock Waves, 2016, 36(5): 728-733. doi: 10.11883/1001-1455(2016)05-0728-06 |
[10] | Chen Shao-jie, Wu Li-zhi, Shen Rui-qi, Ye Ying-hua, Hu Yan. Initiation of HNS-Ⅳ using a laser-driven multi-layer flyer[J]. Explosion And Shock Waves, 2015, 35(2): 285-288. doi: 10.11883/1001-1455-(2015)02-0285-04 |
[11] | Li Yan-yan, Zheng Zhi-jun, Yu Ji-lin, Wang Chang-feng. Finite element analysis on deformation modes of closed-cell metallic foam[J]. Explosion And Shock Waves, 2014, 34(4): 464-470. doi: 10.11883/1001-1455(2014)04-0464-07 |
[12] | Jiang Xi-bo, Rao Guo-ning, Xu Sen, Yao Miao, Ma An-peng, Peng Jin-hua. Shock initiation characteristics of expired single-base propellants[J]. Explosion And Shock Waves, 2014, 34(1): 99-105. doi: 10.11883/1001-1455(2014)01-0099-07 |
[13] | Li Xu -feng, Li Xiang -dong, Gu Wen -bin, Li Yu -chun, Qin Ru -ping. Numerical simulation on detonating shelled explosives by energetic fragments[J]. Explosion And Shock Waves, 2014, 34(2): 202-208. doi: 10.11883/1001-1455(2014)02-0202-07 |
[14] | Chen Lang, Liu Qun, Wy Jun-ying. On shock initiation of heated explosives[J]. Explosion And Shock Waves, 2013, 33(1): 21-28. doi: 10.11883/1001-1455(2013)01-0021-08 |
[15] | TAO Wei-jun, HUAN Shi, HUANG Feng-lei, JIANG Guo-ping. Lateralrarefactionwaveeffectsonshockinitiation ofheterogeneouscondensedexplosives[J]. Explosion And Shock Waves, 2011, 31(4): 397-401. doi: 10.11883/1001-1455(2011)04-0397-05 |
[16] | ZHANG Zhong, CHEN Wei-dong, YANG Wen-miao. Thematerialpointmethodforshock-to-detonationtransitionof heterogeneoussolidexplosive[J]. Explosion And Shock Waves, 2011, 31(1): 25-30. doi: 10.11883/1001-1455(2011)01-0025-06 |
[17] | LIANG Zeng-you, HUANG Feng-lei, ZHANG Zhen-yu. Study on new reaction rate function model of PBX-9404 for damaged explosive initiation behaviour[J]. Explosion And Shock Waves, 2008, 28(1): 38-41. doi: 1.011883/1001-1455(2008)01-0038-06 |
[18] | WANG Gui-ji, ZHAO Tong-hu, MO Jian-jun, WU Gang, HAN Mei, TAN Fu-li. Short-duration pulse shock initiation characteristics of a TATB/HMX-based polymer bonded explosive[J]. Explosion And Shock Waves, 2007, 27(3): 230-235. doi: 10.11883/1001-1455(2007)03-0230-06 |
[19] | PAN Hao, HU Xiao-mian. Numerical simulation for overdriven and shocking-to-detonation transition of insensitive high explosives[J]. Explosion And Shock Waves, 2006, 26(2): 174-178. doi: 10.11883/1001-1455(2006)02-0174-05 |
[20] | LI Zhi-peng, LONG Xin-ping, HUANG Yi-min, HE Bi, WANG Rong, HE Song-wei. Electromagnetic gauge measurements of shock initiating JOB-9003 explosive[J]. Explosion And Shock Waves, 2006, 26(3): 269-272. doi: 10.11883/1001-1455(2006)03-0269-04 |