Citation: | WU Qunbiao, SHEN Peihui, FANG Haifeng, FAN Jihua, CAI Lihua. Simplified model of pre-composited rod's normal penetration into steel target[J]. Explosion And Shock Waves, 2019, 39(1): 013302. doi: 10.11883/bzycj-2017-0287 |
[1] |
FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid[J]. Journal of Applied Mechanics, 1988, 55(2):275-279. DOI: 10.1115/1.3173672.
|
[2] |
ROSENBERG Z, DEKEL E. On the role of nose profile in long-rod penetration[J]. International Journal of Impact Engineering, 1999, 22(5):551-557. DOI: 10.1016/S0734-743X(98)00054-2.
|
[3] |
JONES S E, RULE W K. On the optimal nose geometry for a rigid penetrator, including the effects of pressure-dependent friction[J]. International Journal of Impact Engineering, 2000, 24(4):403-415. DOI: 10.1016/S0734-743X(99)00157-8.
|
[4] |
JONES S E, RULE W K, JEROME D M, et al. On the optimal nose geometry for a rigid penetrator[J]. Computational Mechanics, 1998, 22(5):413-417. DOI: 10.1007/s004660050373.
|
[5] |
CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics[J]. International Journal of Impact Engineering, 2002, 27(6):619-637. DOI: 10.1016/S0734-743X(02)00005-2.
|
[6] |
LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile[J]. International Journal of Impact Engineering, 2003, 28(1):93-116.DOI: 10.1016/S0734-743X(02)00037-4.
|
[7] |
CHIAN S C, TAN B C V, SARMA A. Projectile penetration into sand:Relative density of sand and projectile nose shape and mass[J]. International Journal of Impact Engineering, 2017, 103:29-37.DOI: 10.1016/j.ijimpeng.2017.01.002.
|
[8] |
程兴旺, 王富耻, 李树奎, 等.不同头部形状长杆弹侵彻过程的数值模拟[J].兵工学报, 2007, 28(8):930-933. DOI: 10.3321/j.issn:1000-1093.2007.08.007.
CHENG Xingwang, WANG Fuchi, LI Shukui, et al. Numerical simulation on the penetrations of long-rod projectiles with different nose shapes[J]. Acta Armamentarii, 2007, 28(8):930-933. DOI: 10.3321/j.issn:1000-1093.2007.08.007.
|
[9] |
高光发, 李永池, 黄瑞源, 等.杆弹头部形状对侵彻行为的影响及其机制[J].弹箭与制导学报, 2012, 32(6):51-54. DOI: 10.3969/j.issn.1673-9728.2012.06.015.
GAO Guangfa, LI Yongchi, HUANG Ruiyuan, et al. Effect of nose shape on penetration performance of long-rod penetrator and its mechanism[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(6):51-54. DOI: 10.3969/j.issn.1673-9728.2012.06.015.
|
[10] |
孙庚辰, 吴锦云, 赵国志, 等.长杆弹垂直侵彻半无限厚靶板的简化模型[J].兵工学报, 1981(4):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005146030
SUN Gengchen, WU Jinyun, ZHAO Guozhi, et al. A simplified model of the penetration of the long-rod penetrator against the plated with semi-infinite thickness at normal angle[J]. Acta Armamentarii, 1981(4):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005146030
|
[11] |
吴群彪, 沈培辉, 刘荣忠, 等.长杆体稳定侵彻阶段头部形状的侵彻效率分析[J].兵器材料科学与工程, 2014, 37(3):80-83.DOI: 10.3969/j.issn.1004-244X.2014.03.023.
WU Qunbiao, SHEN Peihui, LIU Rongzhong, et al. Long rod penetration efficiency analysis of nose shape at quasi-steady penetration stage[J]. Ordnance Material Science and Engineering, 2014, 37(3):80-83. DOI: 10.3969/j.issn.1004-244X.2014.03.023.
|
[1] | WEI Guoxu, CUI Hao, ZHOU Hao, YANG Guitao, GUO Rui. Numerical simulation method for tungsten alloy projectilepenetration into steel target[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0147 |
[2] | FENG XiaoWei, LI Juncheng, LU Yonggang, WANG Shouqian, LU Zhengcao, LIU Chuang, FU Dan. Characteristics of high-mass tungsten alloy kinetic projectile penetrating ultra-high strength steel targets at high velocity[J]. Explosion And Shock Waves, 2023, 43(9): 091410. doi: 10.11883/bzycj-2023-0016 |
[3] | ZHANG Jian, XU Yuxin, LIU Tielei, ZHANG Peng. Oblique penetration effect of a tungsten ball on high hardness steel[J]. Explosion And Shock Waves, 2022, 42(2): 023302. doi: 10.11883/bzycj-2021-0427 |
[4] | TANG Changzhou, ZHI Xiaoqi, GAO Feng, YU Yongli. Investigation on tungsten spheres penetrating into pine target covered with body armor[J]. Explosion And Shock Waves, 2021, 41(6): 063302. doi: 10.11883/bzycj-2020-0309 |
[5] | ZHOU Gang, LI Mingrui, WEN Heming, QIAN Bingwen, SUO Tao, CHEN Chunlin, MA Kun, FENG Na. Mechanism on hypervelocity penetration of a tungsten alloy projectile into a concrete target[J]. Explosion And Shock Waves, 2021, 41(2): 021407. doi: 10.11883/bzycj-2020-0304 |
[6] | ZHANG Yuling, SHI Dongmei, ZHANG Yunfeng, LIU Guoqing, ZHEN Jianwei. Investigation of penetration ability and aftereffect of Zr-based metallic glass reinforced porous W matrix composite fragments[J]. Explosion And Shock Waves, 2021, 41(5): 053301. doi: 10.11883/bzycj-2020-0063 |
[7] | ZHANG Peng, ZHAO Pengduo, WANG Zhijun, ZHANG Lei, REN Jie, XU Yuxin. Penetration resistance and fracture mechanism of high-hardness polyurea coating[J]. Explosion And Shock Waves, 2019, 39(1): 015101. doi: 10.11883/bzycj-2018-0224 |
[8] | QIAN Bingwen, ZHOU Gang, LI Jin, LI Yunliang, ZHANG Dezhi, ZHANG Xiangrong, ZHU Yurong, TAN Shushun, JING Jiyong, ZHANG Zidong. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target[J]. Explosion And Shock Waves, 2019, 39(8): 083301. doi: 10.11883/bzycj-2019-0141 |
[9] | WU Xiaoguang, LI Dian, WU Guomin, HOU Hailiang, ZHU Xi, DAI Wenxi. Protection ability of liquid-filled structure subjected to penetration by high-velocity long-rod projectile[J]. Explosion And Shock Waves, 2018, 38(1): 76-84. doi: 10.11883/bzycj-2016-0146 |
[10] | Kang De, Yan Ping. Movement characteristics of high-velocity fragments in water medium: Numerical simulation using LS-DYNA[J]. Explosion And Shock Waves, 2014, 34(5): 534-538. doi: 10.11883/1001-1455(2014)05-0534-05 |
[11] | JIANG Dong, LI Yong-chi, YU Shao-juan, DENG Shi-chun. PenetrationofconfinedAD95ceramiccompositetargets bytungstenlongrods[J]. Explosion And Shock Waves, 2010, 30(1): 91-95. doi: 10.11883/1001-1455(2010)01-0091-05 |
[12] | RONG Guang, HUANG De-wu. Self-sharpening phenomena of tungsten fiber composite material penetratorsduring penetration[J]. Explosion And Shock Waves, 2009, 29(4): 351-355. doi: 10.11883/1001-1455(2009)04-0351-05 |
[13] | LI Yun-kai, XIE Feng, WANG Fu-chi, LI Shu-kui. Study on adiabatic shear failure of W-Ni-Mn heavy alloy[J]. Explosion And Shock Waves, 2007, 27(2): 185-189. doi: 10.11883/1001-1455(2007)02-0185-05 |
[14] | MI Shuang-shan, ZHANG Xi-en, TAO Gui-ming. Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target[J]. Explosion And Shock Waves, 2005, 25(5): 477-480. doi: 10.11883/1001-1455(2005)05-0477-04 |
[15] | SONG Shun-cheng, WANG Jun, WANG Jian-jun. Numerical simulation for penetration of ceramic composite plate by long-rod projectile of tungsten alloy[J]. Explosion And Shock Waves, 2005, 25(2): 102-106. doi: 10.11883/1001-1455(2005)02-0102-05 |
1. | 宋成俊,任建荣,李艳飞. 基于SPH法的不同材料弹芯侵彻半无限靶的数值模拟. 电子制作. 2020(12): 20-23 . ![]() |