Volume 39 Issue 4
Mar.  2019
Turn off MathJax
Article Contents
JIN Yunsheng, SUN Chengwei, ZHAO Jianheng, LUO Binqiang, WANG Guiji, TAN Fuli. Direct calculation method for free surface data processing of step target in ICE[J]. Explosion And Shock Waves, 2019, 39(4): 044201. doi: 10.11883/bzycj-2017-0294
Citation: JIN Yunsheng, SUN Chengwei, ZHAO Jianheng, LUO Binqiang, WANG Guiji, TAN Fuli. Direct calculation method for free surface data processing of step target in ICE[J]. Explosion And Shock Waves, 2019, 39(4): 044201. doi: 10.11883/bzycj-2017-0294

Direct calculation method for free surface data processing of step target in ICE

doi: 10.11883/bzycj-2017-0294
  • Received Date: 2017-08-21
  • Rev Recd Date: 2018-02-11
  • Available Online: 2019-03-25
  • Publish Date: 2019-04-01
  • In ramp compression experiments, the velocity history of the interface particles with different thicknesses correlates with the parameters of the material compression characteristics. However, there is no direct access to reveal this relationship using conventional data processing methods. In this article, a correlation was established based on the characteristic line theory, and the ramp compression flow field with unknown EOS could be directly calculated. And numerical experiments show that this method can not only accurately calculate the theoretical value in the data processing without strength effect, but also approximate the theoretical value in data processing with strength effect. And, in the real experimental data processing, the results produced by this method are in good agreement with the literatures. This research provides a reliable new way to explore the strength effect data processing method with complete theory.
  • loading
  • [1]
    DAVIS J P, DEENEY C, KNUDSON M D, et al. Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator [J]. Physics of Plasmas, 2005, 12(5): 56310–17. DOI: 10.1063/1.1871954.
    [2]
    MCNALLY J H, BARNES J W, DROPESKY B J, et al. Neutron-induced fission cross section of 237U [J]. Physical Review C, 1974, 9(2): 717–722. DOI: 10.1103/PhysRevC.9.717.
    [3]
    SWIFT D C, KRAUS R G, LOOMIS E, et al. Shock formation and the ideal shape of ramp compression waves [J]. Physical Review E, 2008, 78(6): 066115. DOI: 10.1103/PhysRevE.78.066115.
    [4]
    LEMKE R W, KNUDSON M D, ROBINSON A C, et al. Self-consistent, two-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates [J]. Physics of Plasmas, 2003, 10(5): 1557530. DOI: 10.1063/1.1557530.
    [5]
    DAVIS J P. Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa [J]. Journal of Applied Physics, 2006, 99(10): 103512. DOI: 10.1063/1.2196110.
    [6]
    LEMKE R W, KNUDSON M D, DAVIS J P, et al. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator [J]. International Journal of Impact Engineering, 2011, 38(6): 480–485. DOI: 10.1016/j.ijimpeng.2010.10.019.
    [7]
    WANG Guiji, LUO Binqiang, ZHANG Xuping, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. DOI: 10.1063/1.4788935.
    [8]
    SWIFT D C, JOHNSON R P. Quasi-isentropic compression by ablative laser loading: response of materials to dynamic loading on nanosecond time scales [J]. Physical Review E, 2005, 71: 066401. DOI: 10.1103/PhysRevE.71.066401.
    [9]
    LORENZ K T, EDWARDS M J, JANKOWSKI A F, et al. High pressure, quasi-isentropic compression experiments on the Omega laser [J]. High Energy Density Physics, 2006, 2(3−4): 113–125. DOI: 10.1016/j.hedp.2006.08.001.
    [10]
    ASAY J R, AO T, DAVIS J P, et al. Effect of initial properties on the flow strength of aluminum during quasi-isentropic compression [J]. Journal of Applied Physics, 2008, 103(8): 083514. DOI: 10.1063/1.2902855.
    [11]
    AO T, ASAY J R, CHANTRENNE S, et al. A compact strip-line pulsed power generator for isentropic compression experiments [J]. Review of Scientific Instruments, 2008, 79(1): 013903. DOI: 10.1063/1.2827509.
    [12]
    VOGLER T J, AO T, ASAY J R. High-pressure strength of aluminum under quasi-isentropic loading [J]. International Journal of Plasticity, 2009, 25(4): 671–694. DOI: 10.1016/j.ijplas.2008.12.003.
    [13]
    BROWN J L, ALEXANDER C S, ASAY J R, et al. Extracting strength from high pressure ramp-release experiments [J]. Journal of Applied Physics, 2013, 114(22): 223518. DOI: 10.1063/1.4847535.
    [14]
    BROWN J L, ALEXANDER C S, ASAY J R, et al. Flow strength of tantalum under ramp compression to 250 GPa [J]. Journal of Applied Physics, 2014, 115(4): 043530. DOI: 10.1063/1.4863463.
    [15]
    DAVIS J P, BROWN J L, KNUDSON M D, et al. Analysis of shockless dynamic compression data on solids to multimegabar pressure: application to tantalum [J]. Journal of Applied Physics, 2014, 116: 204903. DOI: 10.1063/1.4902863.
    [16]
    OCKENDON H, OCKENDON J R, PLATT J D. Determining the equation of state of highly plasticised metals from boundary velocimetry: part I [J]. Journal Engineering Mathematics, 2010, 68: 269–277. DOI: 10.1007/s10665-010-9401-0.
    [17]
    HINCH E J. Determining the equation of state of highly plasticised metals from boundary velocimetry [J]. Journal Engineering Mathematics, 2010, 68: 279–289. DOI: 10.1007/s10665-010-9379-7.
    [18]
    JIN Yunsheng, SUN Chengwei, ZHAO Jianheng, et al. Optimization of loading pressure waveforms for piston driven isentropic compression [J]. Journal of Applied Physics, 2014, 115(24): 243506. DOI: 10.1063/1.4885756.
    [19]
    KRAUS R G, DAVIS J P, SEAGLE C T, et al. Dynamic compression of copper to over 450 GPa: a high-pressure standard [J]. Physical Review B, 2016, 93: 134105. DOI: 10.1103/PhysRevB.93.134105.
    [20]
    张红平, 孙承纬, 李牧, 等. 准等熵实验数据处理的反积分方法研究 [J]. 力学学报, 2011, 43(1): 105–111. DOI: 10.6052/0459-1879-2011-1-lxxb2010-053

    ZHANG Hongping, SUN Chengwei, LI Mu, et al. Backward integration method in data processing of quasi-isentropic compression experiment [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 105–111. DOI: 10.6052/0459-1879-2011-1-lxxb2010-053
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (4930) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return