Volume 39 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
LI Dian, HOU Hailiang, ZHU Xi, CHEN Changhai, LI Mao. A theoretical model for the evaluation of protective capability of a sandwich bulkhead structure in the close range of warhead explosion[J]. Explosion And Shock Waves, 2019, 39(2): 022201. doi: 10.11883/bzycj-2017-0351
Citation: LI Dian, HOU Hailiang, ZHU Xi, CHEN Changhai, LI Mao. A theoretical model for the evaluation of protective capability of a sandwich bulkhead structure in the close range of warhead explosion[J]. Explosion And Shock Waves, 2019, 39(2): 022201. doi: 10.11883/bzycj-2017-0351

A theoretical model for the evaluation of protective capability of a sandwich bulkhead structure in the close range of warhead explosion

doi: 10.11883/bzycj-2017-0351
  • Received Date: 2017-09-28
  • Rev Recd Date: 2017-10-26
  • Publish Date: 2019-02-05
  • In order to make up for the shortcomings in protective structure design based on simple anti-blast or anti-armor load, a theoretical model was proposed for evaluating the protective capability of sandwich bulkhead in the close range of a warhead explosion, and its protection capability should meet the requirements of both the ballistic performance and the overall deformation and destruction. The first step is to calculate the combined damage load under warhead explosion. Then, based on the ballistic theory model, it can be used to evaluate whether the composite structure meets the requirements of the ballistic resistance. If it is satisfied, the requirements of composite sandwich bulkhead on overall deformation and failure under the combined load of shock wave and fragment group are further checked according to the combined damage theory model, and the criterion is whether the rear panel is broken or being torn. The experimental results are in good agreement with those of the domestic experimental results, which shows that the theoretical evaluation model is reasonable.
  • loading
  • [1]
    孔祥韶, 吴卫国, 杜志鹏, 等.圆柱形战斗部爆炸破片特性研究[J].工程力学, 2014, 31(1):243-249. DOI: 10.6052/j.issn.1000-4750.2012.09.0672.

    KONG Xiangshao, WU Weiguo, DU Zhipeng, et al. Research on fragments characteristic of cylindrical warhead[J]. Engineering Mechanics, 2014, 31(1):243-249. DOI: 10.6052/j.issn.1000-4750.2012.09.0672.
    [2]
    史作飞.模拟弹与水面舰船防护甲板的对抗研究[D].南京: 南京理工大学, 2014. http://cdmd.cnki.com.cn/article/cdmd-10288-1014176692.htm
    [3]
    LONGÈRE P, GEFFROY-GRÈZE A G, LEBLÉ B, et al. Ship structure steel plate failure under near-field air-blast loading:numerical simulations vs experiment[J]. International Journal of Impact Engineering, 2013, 62:88-98. DOI: 10.1016/j.ijimpeng.2013.06.009.
    [4]
    陈长海, 朱锡, 侯海量, 等.舰船舷侧复合装甲结构抗动能穿甲模拟实验[J].爆炸与冲击, 2011, 31(1):11-18. DOI: 10.11883/1001-1455(2011)01-0011-08.

    CHEN Changhai, ZHU Xi, HOU Hailiang, et al. Experimental study on composite armour structure of warship topside against kinetic armor piercing[J]. Explosion and Shock Waves, 2011, 31(1):11-18. DOI: 10.11883/1001-1455(2011)01-0011-08.
    [5]
    陈长海, 朱锡, 侯海量, 等.结构形式对舰船舷侧复合装甲结构抗穿甲性能的影响研究[J].振动与冲击, 2013, 32(14):58-63. doi: 10.3969/j.issn.1000-3835.2013.14.010

    CHEN Changhai, ZHU Xi, HOU Hailiang, et al. Influence of structure configuration on perforation-resistance of a warship topside composite armour system[J]. Journal of Vibration and Shock, 2013, 32(14):58-63. doi: 10.3969/j.issn.1000-3835.2013.14.010
    [6]
    张成亮, 朱锡, 侯海量, 等.爆炸冲击波与高速破片对夹层结构的联合毁伤效应试验研究[J].振动与冲击, 2014, 33(11):33-37. http://d.old.wanfangdata.com.cn/Periodical/zdycj201415033

    ZHANG Chengliang, ZHU Xi, HOU Hailiang, et al. Tests for combined damage effect of blast waves and high fragments on composite sandwich plates[J]. Journal of Vibration and Shock, 2014, 33(15):184-188. http://d.old.wanfangdata.com.cn/Periodical/zdycj201415033
    [7]
    侯海量, 张成亮, 李茂, 等.冲击波和高速破片联合作用下夹芯复合舱壁结构的毁伤特性[J].爆炸与冲击, 2015, 35(1):116-123. DOI: 10.11883/1001-1455(2015)01-0116-08.

    HOU Hailiang, ZHANG Chengliang, LI Mao, et al. Damage characteristics of sandwich bulkhead under the impact of shock and high-velocity fragments[J]. Explosion and Shock Waves, 2015, 35(1):116-123. DOI: 10.11883/1001-1455(2015)01-0116-08.
    [8]
    李典, 朱锡, 侯海量, 等.近距爆炸破片作用下芳纶纤维夹芯复合舱壁结构毁伤特性实验研究[J].兵工学报, 2016, 37(8):1436-1442. DOI: 10.3969/j.issn.1000-1093.2016.08.014.

    LI Dian, ZHU Xi, HOU Hailiang, et al. Experimental investigation on damage of aramid fiber sandwich bulkhead under near explosion and fragment loadings[J]. Acta Armamentarii, 2016, 37(8):1436-1442. DOI: 10.3969/j.issn.1000-1093.2016.08.014.
    [9]
    CHUNG KIM YUEN S, NURICK G N, LANGDON G S, et al. Deformation of thin plates subjected to impulsive load:Part Ⅲ:an update 25 years on[J].International Journal of Impact Engineering, 2016, 107:108-117. DOI: 10.1016/j.ijimpeng.2016.06.010.
    [10]
    RAHIMZADEH T, ARRUDA E M, THOULESS M D. Design of armor for protection against blast and impact[J]. Journal of the Mechanics and Physics of Solids, 2015, 85:98-111. DOI: 10.1016/j.jmps.2015.09.009.
    [11]
    MAMIVAND M, LIAGHAT G H. A model for ballistic impact on multi-layer fabric targets[J]. International Journal of Impact Engineering, 2010, 37:806-812. DOI: 10.1016/j.ijimpeng.2010.01.003.
    [12]
    CWIK T K, LANNUCCI L, CURTIS P, et al. Investigation of the ballistic performance of ultra high molecular weight polyethylene composite panels[J]. Composite Structures, 2016, 149:197-212. DOI: 10.1016/j.compstruct.2015.11.009.
    [13]
    NYSTRÖM U, GYLLTOFT K. Numerical studies of the combined effects of blast and fragment loading[J]. International Journal of Impact Engineering, 2009, 36(8):995-1005. DOI: 10.1016/j.ijimpeng.2009.02.008.
    [14]
    MARCHAND K A, VARGAS M M, NIXON J D. The synergistic effects of combined blast and fragment loadings: ESL-TR-91-18[R]. 1992.
    [15]
    KONG Xiangshao, WU Weiguo, LI Jun, et al.Experimental and numerical investigation on a multi-layer protective structure under the synergistic effect of blast and fragment loadings[J]. International Journal of Impact Engineering, 2014, 65(3):146-162. DOI: 10.1016/j.ijimpeng.2013.11.009.
    [16]
    孙业斌.爆炸作用与装药设计[M].北京:国防工业出版社, 1987.
    [17]
    XUE Zhenyu, HUTCHINSON J W. A comparative study of impulse resistant metal sandwich plates[J]. International Journal of Impact Engineering, 2004, 30(10):1283-1305. DOI: 10.1016/j.ijimpeng.2003.08.007.
    [18]
    王儒策.赵国志.弹丸终点效应[M].北京:北京理工大学出版社, 1993.
    [19]
    隋树元, 王树山.终点效应学[M].北京:国防工业出版社, 2000.
    [20]
    赵国志.穿甲工程力学[M].北京:兵器工业出版社, 1989.
    [21]
    WEN H M. Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes[J]. Composite Structure, 2000, 49(3):321-329. DOI: 10.1016/S0263-8223(00)00064-7.
    [22]
    WEN H M. Penetration and perforation of thick FRP laminates[J]. Composite Science and Technology, 2001, 61(8):1163-1172. DOI: 10.1016/S0266-3538(01)00020-3.
    [23]
    李永池, 陈居伟, 胡秀章.等.纤维增强复合靶抗贯穿规律研究[J].弹道学报, 2000, 12(2):15-21. DOI: 10.3969/j.issn.1004-499X.2000.02.004.

    LI Yongchi, CHEN Juwei, HU Xiuzhang, et al. The research on the anti-penetration rules of fiber-reinforced composite laminates[J]. Journal of Ballistics, 2000, 12(2):15-21. DOI: 10.3969/j.issn.1004-499X.2000.02.004.
    [24]
    王礼立.应力波基础[M].北京:国防工业出版社, 2005:1-60.
    [25]
    吴有生, 彭兴宁, 赵本立.爆炸载荷作用下舰船板架的变形与破损[J].中国造船, 1995(4):55-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500633715

    WU Yousheng, PENG Xingning, ZHAO Benli. Plastic deformation and damage of naval panels subjected to explosion loading[J]. Shipbuliding of China, 1995(4):55-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500633715
    [26]
    朱锡, 张振华, 梅志远, 等.舰船结构毁伤力学[M].北京:国防工业出版社, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (6381) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return