Citation: | HE Nianfeng, REN Guowu, CHEN Yongtao, GUO Zhaoliang. Numerical simulation on spallation and fragmentation of tin under explosive loading[J]. Explosion And Shock Waves, 2019, 39(4): 042101. doi: 10.11883/bzycj-2017-0354 |
[1] |
ANDRIOT P, CHAPRON P, LAMBERT V, et al. Influence of melting on shocked free surface behaviour using Doppler laser interferometry and X-ray densitometry [C] // AIP Conference Proceedings: Shock Waves in Condensed Matter, 1983: 277−280. DOI: 10.1016/b978-0-444-86904-3.50065-8.
|
[2] |
ZHIEMBETOV A K, MIKHAYLOV A L, SMIRNOV G S. Experimental study of explosive fragmentation of metals melts [C] // AIP Conference Proceedings: Shock Compression of Condensed Matter, 2001: 547−552. DOI: 10.1063/1.1483598.
|
[3] |
HOLTKAMP D B, CLARK D A, FERME N, et al. A survey of high explosive-induced damage and spall in selected metals using proton radiography [C] // AIP Conference Proceedings: Shock Compression of Condensed Matter, 2004: 477−482. DOI: 10.1063/1.1780281.
|
[4] |
ANTOUN T, SEAMAN L, CURRAN D R, et al. Spall fracture [M]. New York: Springer, 2002: 1−34.
|
[5] |
HOPKINSON B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets [J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1914, 213: 437–456. DOI: 10.1098/rsta.1914.0010.
|
[6] |
SIGNOR L, RESSEGUIER T D, ROY G, et al. Fragment-size prediction during dynamic fragmentation of shock-melted tin: recovery experiments and modeling issues [C] // AIP Conference Proceedings: Shock Compression of Condensed Matter, 2007: 593−596. DOI: 10.1063/1.2833159.
|
[7] |
RESSEGUIER T D, SIGNOR L, DRAGON A, et al. Dynamic fragmentation of laser shock-melted tin: experiment and modelling [J]. International Journal of Fracture, 2010, 163(1/2): 109–119.
|
[8] |
陈永涛, 任国武, 汤铁钢, 等. 爆轰加载下金属样品的熔化破碎现象诊断 [J]. 物理学报, 2013, 62(11): 116202 doi: 10.7498/aps.62.116202
CHEN Yongtao, HONG Renwu, TANG Tiegang, et al. Experimental diagnostic of melting fragments under explosive loading [J]. Acta Physica Sinica, 2013, 62(11): 116202 doi: 10.7498/aps.62.116202
|
[9] |
陈永涛, 洪仁楷, 陈浩玉, 等. 爆轰加载下金属材料的微层裂现象 [J]. 爆炸与冲击, 2017, 37(1): 61–67. DOI: 10.11883/1001-1455(2017)01-0061-07
CHEN Yongtao, HONG Renkai, CHEN Haoyu, et al. Micro-spalling of metal under explosive loading [J]. Explosion and Shock Waves, 2017, 37(1): 61–67. DOI: 10.11883/1001-1455(2017)01-0061-07
|
[10] |
CHEN Y, HONG R, CHEN H, et al. An improved Asay window technique for investigating the micro-spall of an explosively-driven tin [J]. Review of Scientific Instruments, 2017, 88(1): 013904. doi: 10.1063/1.4973699
|
[11] |
张林, 李英华, 张祖根, 等. 用于诊断材料微层裂的Asay窗技术 [J]. 爆炸与冲击, 2017, 37(4): 692–698. DOI: 10.11883/1001-1455(2017)04-0692-07
ZHANG Lin, LI Yinghua, ZHANG Zugen, et al. Asay window for probing the microspall of materials [J]. Explosion and Shock Waves, 2017, 37(4): 692–698. DOI: 10.11883/1001-1455(2017)04-0692-07
|
[12] |
SOULARD L. Molecular dynamics study of the micro-spallation [J]. The European Physical Journal D, 2008, 50(3): 241–251. DOI: 10.1140/epjd/e2008-00212-2.
|
[13] |
XIANG M, HU H, CHEN J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. doi: 10.1088/0965-0393/21/5/055005
|
[14] |
XIANG M, HU H, CHEN J. Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies [J]. Journal of Applied Physics, 2013, 113(14): 144312. doi: 10.1063/1.4799388
|
[15] |
曹结东, 刘文韬, 张树道. 爆轰驱动锡微层裂的数值模拟研究 [C] // 第十四届全国激波与激波管学术会, 2010: 153−157.
|
[16] |
张锁春. 光滑质点流体动力学(SPH)方法: 综述 [J]. 计算物理, 1996, 13(4): 385–397
ZHANG Suochun. Smoothedparticle hydrodynamics (SPH) method: a review [J]. Chinese Journal of Computation Physics, 1996, 13(4): 385–397
|
[17] |
刘谋斌, 宗智, 常建忠. 光滑粒子动力学方法的发展与应用 [J]. 力学进展, 2011, 41(2): 217–234
LIU Moubin, ZONG zhi, CHANG Jianzhong. Developements and applications of smoothed particle hydrodynamics [J]. Advances in Mechanics, 2011, 41(2): 217–234
|
[18] |
STEINBERG D J, COCHRAN S G, Guinan M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
|
[19] |
GRADY D E. The spall strength of condensed matter [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 353–384. doi: 10.1016/0022-5096(88)90015-4
|
[1] | QIAN Bingwen, ZHOU Gang, CHEN Chunlin, MA Kun, LI Yishuo, GAO Pengfei, YIN Lixin. Measurement and analysis of stress waves in concrete target under hypervelocity impact[J]. Explosion And Shock Waves, 2025, 45(5): 054101. doi: 10.11883/bzycj-2024-0181 |
[2] | LI Guoqiang, MA Gang, GAO Songtao, GUO Dongcai, ZHANG Jiayin. Numerical study on dynamic response and spall damage of filter concrete under impact load[J]. Explosion And Shock Waves, 2023, 43(2): 023201. doi: 10.11883/bzycj-2022-0189 |
[3] | LYU Haicheng, HUANG Xiaolong, LI Ning, WENG Chunsheng. Transmission and reflection characteristics of gaseous detonation waves impacting on gas-solid interface[J]. Explosion And Shock Waves, 2022, 42(11): 112101. doi: 10.11883/bzycj-2021-0523 |
[4] | WANG Lili. Some doubts in studying explosion/impact dynamics[J]. Explosion And Shock Waves, 2021, 41(1): 011401. doi: 10.11883/bzycj-2020-0415 |
[5] | PENG Kefeng, CUI Shitang, PAN Hao, ZHENG Zhijun, YU Jilin. Simplified model of elastic wave propagation in cylindrical shell chain under impact load and its analytical solution[J]. Explosion And Shock Waves, 2021, 41(1): 011403. doi: 10.11883/bzycj-2020-0246 |
[6] | HE Nianfeng, ZHANG Shaolong, HONG Renkai, CHEN Yongtao, REN Guowu. Effects of gap on the explosive loading process of tin[J]. Explosion And Shock Waves, 2021, 41(1): 012101. doi: 10.11883/bzycj-2020-0054 |
[7] | SHEN Fei, WANG Hui, QU Kepeng, ZHANG Gao. Expansion and fracture characteristics of oxygen-free copper tubes with different grain sizes under detonation loading[J]. Explosion And Shock Waves, 2020, 40(2): 022201. doi: 10.11883/bzycj-2019-0063 |
[8] | SHI Zebin, ZHU Zheming, WANG Xiaomeng, WANG Xiong. A new testing method for mode Ⅰ crack initiation fracture toughness under middle-low speed impacts[J]. Explosion And Shock Waves, 2018, 38(6): 1247-1254. doi: 10.11883/bzycj-2017-0132 |
[9] | Sun Xiaowang, Zhang Jie, Wang Xiaojun, Li Yongchi, Zhao Kai. Application of SPH in stress wave simulation[J]. Explosion And Shock Waves, 2017, 37(1): 21-26. doi: 10.11883/1001-1455(2017)01-0010-05 |
[10] | Wu Xutao, Liao Li. Numerical simulation of stress wave attenuation in brittle material and spalling experiment design[J]. Explosion And Shock Waves, 2017, 37(4): 705-711. doi: 10.11883/1001-1455(2017)04-0705-07 |
[11] | Wang Qifan, Shi Shaoqing, Wang Zheng, Sun Jianhu, Chu Zhaojun. Experimental study on penetration-resistance characteristics of honeycomb shelter[J]. Explosion And Shock Waves, 2016, 36(2): 253-258. doi: 10.11883/1001-1455(2016)02-0253-06 |
[12] | Jin Shan, Liu Xin, Yuan Shuai, Hua Jin-song, Tang Tie-gang. Method for calculating small difference of fracture time of cylinder shell unloaded by detonation[J]. Explosion And Shock Waves, 2015, 35(1): 130-134. doi: 10.11883/1001-1455(2015)01-0130-05 |
[13] | Mao Liu-wei, Wang An-wen, Deng Lei, Han Da-wei. Dynamic buckling of elastic rectangular thin platessubjected to in-plane impact[J]. Explosion And Shock Waves, 2014, 34(4): 385-391. doi: 10.11883/1001-1455(2014)04-0385-07 |
[14] | Guo Zhao-liang, Ren Guo-wu, Tang Tie-gang, Liu Cang-li. Microscopic and macroscopic numerical simulation on interaction between stress wave and flaw[J]. Explosion And Shock Waves, 2014, 34(1): 52-58. doi: 10.11883/1001-1455(2014)01-0052-07 |
[15] | ZHAO Kai, WANG Xiao-jun, LIU Fei, LUO Wen-chao. Propagationofstresswaveinporousmaterial[J]. Explosion And Shock Waves, 2011, 31(1): 107-112. doi: 10.11883/1001-1455(2011)01-0107-06 |
[16] | LIU Yan, XU Jin-yu. Dynamic triggering of stress wave to fault with linear slip-weakening friction[J]. Explosion And Shock Waves, 2009, 29(1): 18-22. doi: 10.11883/1001-1455(2009)01-0018-05 |
[17] | ZHENG Bo, WANG An-wen. Axisymmetric dynamic plastic buckling of cylindrical shells under axial compression waves[J]. Explosion And Shock Waves, 2008, 28(3): 271-275. doi: 10.11883/1001-1455(2008)03-0271-05 |
[18] | JU Yang, HUAN Xiao-feng, SONG Zhen-duo, TIAN Lu-lu, MAO Yan-zhe. Numerical analyses of blast wave stress propagation and damage evolution in rock masses[J]. Explosion And Shock Waves, 2007, 27(2): 136-142. doi: 10.11883/1001-1455(2007)02-0136-07 |
[19] | YAO Lei, LI Yong-chi. Propagation characteristics of stress waves in solids with variable section[J]. Explosion And Shock Waves, 2007, 27(4): 345-351. doi: 10.11883/1001-1455(2007)04-0345-07 |
[20] | LI Yong-chi, YAO Lei, SHEN Jun, HU Xiu-zhang. Insulation effect of the cavity on stress wave[J]. Explosion And Shock Waves, 2005, 25(3): 193-199. doi: 10.11883/1001-1455(2005)03-0193-07 |
1. | 刘军,曹衍闯,熊俊,王裴. 金属微层裂模拟中的抗拉伸不稳定人为应力方法. 中国科学:物理学 力学 天文学. 2022(02): 69-79 . ![]() | |
2. | 刘军,孙致远,张凤国,王裴. 金属材料层裂再压实的模拟研究. 爆炸与冲击. 2022(03): 13-24 . ![]() | |
3. | 贺年丰,张绍龙,洪仁楷,陈永涛,任国武. 间隙对金属锡爆轰加载过程的影响. 爆炸与冲击. 2021(01): 49-55 . ![]() | |
4. | 王云天,曾祥国,陈华燕,杨鑫,王放,祁忠鹏. 钽靶板在冲击下层裂过程的数值模拟. 高压物理学报. 2021(02): 90-103 . ![]() | |
5. | 王云天,曾祥国,陈华燕,杨鑫,王放,祁忠鹏. 延性金属层裂自由面速度曲线特征多尺度模拟研究. 爆炸与冲击. 2021(08): 139-153 . ![]() |