Volume 39 Issue 5
May  2019
Turn off MathJax
Article Contents
GAO Kanghua, LI Bin, LIU Yudu, SUN Song. Interaction of a shock wave with a composite shell structure under an external explosion[J]. Explosion And Shock Waves, 2019, 39(5): 052101. doi: 10.11883/bzycj-2017-0370
Citation: GAO Kanghua, LI Bin, LIU Yudu, SUN Song. Interaction of a shock wave with a composite shell structure under an external explosion[J]. Explosion And Shock Waves, 2019, 39(5): 052101. doi: 10.11883/bzycj-2017-0370

Interaction of a shock wave with a composite shell structure under an external explosion

doi: 10.11883/bzycj-2017-0370
  • Received Date: 2017-10-16
  • Rev Recd Date: 2018-01-24
  • Available Online: 2019-07-25
  • Publish Date: 2019-05-01
  • In order to investigate the interaction of the shock wave on a reinforced concrete composite shell structure with the external protecting wall, the explosion experiments were carried out. There were two conditions in the experiments, the first condition was that the test structure was located on the ground, and the second one was that the test structure was surrounded by soil. The blast wave load distribution and the vibration characters of the structure were analyzed. The experimental results are as follows. Under external shock wave attack, the structure surface explosion load was mainly formed in the shock wave diffraction process. When determining the structure surface blast load, the shock wave pressure attenuation in the diffraction process should be considered. The structure component which first contacts with the shock wave first begins to vibrate, then the vibration frequency and amplitude decrease because the whole structure takes part in vibration gradually. In the experimental conditions, the soil surrounding the structure could reduce the vibration frequency of the protecting wall component which meeting shock wave, and reduce the vibration amplitudes of the protecting wall and the composite shell structure.
  • loading
  • [1]
    吴昊, 方秦, 龚自明, 等. 冲击爆炸作用对核电站安全壳毁伤效应研究的进展 [J]. 防灾减灾工程学报, 2012, 32(3): 384–392.

    WU Hao, FANG Qin, GONG Ziming, et al. State of arts of impact and blast effects on the NPPC [J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(3): 384–392.
    [2]
    葛庆子, 翁大根, 张瑞甫. 特大型LNG储罐等壳体结构抗爆研究综述 [J]. 振动与冲击, 2013, 32(11): 89–94. DOI: 10.3969/j.issn.1000-3835.2013.11.019.

    GE Qingzi, WENG Dagen, ZHANG Ruifu. Reviews of antiknock study on extra-large LNG storage tank and other shell structures [J]. Journal of Vibration and Shock, 2013, 32(11): 89–94. DOI: 10.3969/j.issn.1000-3835.2013.11.019.
    [3]
    郑文凯. 大型商用飞机撞击核电站屏蔽厂房的荷载研究 [D]. 北京: 清华大学, 2013: 1-91.
    [4]
    吴婧姝, 张兴斌, 潘蓉. 大型商用飞机撞击核安全壳破坏效应的数值模拟 [J]. 工业建筑, 2016, 46(10): 28–32. DOI: 10.13204/j.gyjz201610007.

    WU Jingshu, ZHANG Xingbin, PAN Rong. Numerical simulation of response and damage of nuclear containment under large commercial aircraft impact [J]. Industrial Construction, 2016, 46(10): 28–32. DOI: 10.13204/j.gyjz201610007.
    [5]
    赵春风, 陈健云. 内爆荷载作用下钢筋混凝土安全壳的非线性响应分析 [J]. 爆炸与冲击, 2013, 33(6): 667–672. DOI: 10.11883/1001-1455(2013)06-0667-06.

    ZHAO Chunfeng, CHEN Jianyun. Dynamic responses of reinforced concrete containment subjected to internal blast loading [J]. Explosion and Shock Waves, 2013, 33(6): 667–672. DOI: 10.11883/1001-1455(2013)06-0667-06.
    [6]
    刘云飞, 王天运, 贺锋, 等. 核反应堆预应力钢筋混凝土安全壳内爆炸数值分析 [J]. 工程力学, 2007, 24(8): 168–172. DOI: 10.3969/j.issn.1000-4750.2007.08.030.

    LIU Yunfei, WANG Tianyun, HE Feng, et al. Numerical simulation for pre-stress concrete containment under internal explosive loading [J]. Engineering Mechanics, 2007, 24(8): 168–172. DOI: 10.3969/j.issn.1000-4750.2007.08.030.
    [7]
    张娟花, 陈鹏. CPR1000+核电厂堆腔注水蒸汽爆炸及安全壳结构响应分析 [C] // 中国核科学技术进展报告: 第四卷: 中国核学会2015年学术年会论文集. 北京: 中国原子能出版社, 2016: 1−6.
    [8]
    杨帆, KUDRIAKOV S, 余红星, 等. 严重事故下安全壳内氢气爆燃风险数值模拟研究 [J]. 核动力工程, 2017, 38(4): 159–162. DOI: 10.13832/j.jnpe.2017.04.0159.

    YANG Fan, KUDRIAKOV S, YU Hongxing, et al. Numerical simulation study on containment hydrogen deflagration risk under severe accident [J]. Nuclear Power Engineering, 2017, 38(4): 159–162. DOI: 10.13832/j.jnpe.2017.04.0159.
    [9]
    PANDEY A K, KUMAR R, PAUL D K, et al. Non-linear response of reinforced concrete containment structure under blast loading [J]. Nuclear Engineering and Design, 2006, 236(9): 993–1002. DOI: 10.1016/j.nucengdes.2005.09.015.
    [10]
    余爱萍, 王远功, 翁智远. 冲击波对核反应堆安全壳的动力响应研究 [J]. 爆炸与冲击, 1992, 12(3): 219–227.

    YU Aiping, WANG Yuangong, WENG Zhiyuan. Transient response of a containment structure of nuclear reactor subjected to a blast wave [J]. Explosion and Shock Waves, 1992, 12(3): 219–227.
    [11]
    余爱萍, 王远功. 核反应堆安全壳在冲击荷载作用下的动力响应研究 [J]. 振动与冲击, 1990, 35(3): 52–59. DOI: 10.13465/j.cnki.jvs.1990.03.010.

    YU Aiping, WANG Yuangong. Transient response of a containment structure of nuclear reactor subjected to impact load [J]. Journal of Vibration and Shock, 1990, 35(3): 52–59. DOI: 10.13465/j.cnki.jvs.1990.03.010.
    [12]
    王天运, 任辉启, 刘水江, 等. 爆炸冲击波作用下核电站安全壳动力分析模型 [J]. 武汉理工大学学报, 2003, 25(9): 46–48. DOI: 10.3321/j.issn.1671-4431.2003.09.014.

    WANG Tianyun, REN Huiqi, LIU Shuijiang, et al. Dynamic analysis model for the containment vessel of the nuclear station under blast shock wave [J]. Journal of Wuhan University of Technology, 2003, 25(9): 46–48. DOI: 10.3321/j.issn.1671-4431.2003.09.014.
    [13]
    王天运, 任辉启, 刘立胜. 常规装药爆炸荷载作用下核电站安全壳的动力响应分析 [J]. 工程建设与设计, 2005, 4: 20–23. DOI: 10.3969/j.issn.1007-9467.2005.04.007.

    WANG Tianyun, REN Huiqi, LIU Lisheng. Nuclear power station concrete containment dynamical response analysis under blast load of general bomb [J]. Construction and Design for Project, 2005, 4: 20–23. DOI: 10.3969/j.issn.1007-9467.2005.04.007.
    [14]
    王天运, 高缨, 申祖武. 有限体积元法在安全壳抗爆数值模拟中的应用 [J]. 工程建设与设计, 2006(11): 6–9. DOI: 10.3969/j.issn.1007-9467.2006.11.002.

    WANG Tianyun, GAO Ying, SHEN Zuwu. Finite volume element application in containment shell numerical simulation under blast shock wave [J]. Construction and Design for Project, 2006(11): 6–9. DOI: 10.3969/j.issn.1007-9467.2006.11.002.
    [15]
    王天运, 任辉启, 张力军, 等. 爆炸地冲击作用下某核电站安全壳的破坏形式 [J]. 工程力学, 2003(S1): 397–402.

    WANG Tianyun, REN Huiqi, ZHANG Lijun, et al. The failure effect of nuclear reactor under ground shock wave [J]. Engineering Mechanics, 2003(S1): 397–402.
    [16]
    王天运, 任辉启, 张力军. 安全壳钢筋混凝土简支墙抗爆性能分析 [J]. 郑州大学学报(工学版), 2004, 25(2): 39–43. doi: 10.3969/j.issn.1671-6833.2004.02.010

    WANG Tianyun, REN Huiqi, ZHANG Lijun. Nonlinear distribution of seismic active earth pressure on rigid retaining walls [J]. Journal of Zhengzhou University (Engineering Science), 2004, 25(2): 39–43. doi: 10.3969/j.issn.1671-6833.2004.02.010
    [17]
    申祖武, 刘国强, 王天运, 等. 炸药触地爆炸后核电站安全壳基底振动响应分析 [J]. 岩土力学, 2009, 30(8): 2540–2544. DOI: 10.16285/j.rsm.2009.08.061.

    SHEN Zuwu, LIU Guoqiang, WANG Tianyun, et al. Analysis of vibration response of containment foundation in nuclear power station after munitions bombing [J]. Rock and Soil Mechanics, 2009, 30(8): 2540–2544. DOI: 10.16285/j.rsm.2009.08.061.
    [18]
    HUANG Wensheng, ONODERA O, TAKAYAMA K. Unsteady interaction of shock wave diffracting around a circular cylinder in air [J]. Acta Mechanica Sinica, 1991, 7(4): 295–299. doi: 10.1007/BF02486736
    [19]
    DRIKAKIS D, OFENGEIM D, TIMOFEEV E, et al. Computation of non-stationary shock-wave/cylinder interaction using adaptive-grid methods [J]. Journal of Fluids and Structures, 1997, 11: 665–691. DOI: 10.1006/jfls.1997.0101.
    [20]
    LANGLET A, SOULI M, AQUELET N, et al. Air blast reflecting on a rigid cylinder: simulation and reduced scale experiments [J]. Shock Waves, 2015, 25(1): 47–61. DOI: 10.1007/s00193-014-0531-6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(1)

    Article Metrics

    Article views (5511) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return