Volume 39 Issue 5
May  2019
Turn off MathJax
Article Contents
WANG Qinghui, YUAN Shuai, WEI Yuanmeng, WANG Danfeng. On factors affecting minimum ignition temperature of corn starch dust cloud based on interactive orthogonal experiment[J]. Explosion And Shock Waves, 2019, 39(5): 055401. doi: 10.11883/bzycj-2017-0388
Citation: WANG Qinghui, YUAN Shuai, WEI Yuanmeng, WANG Danfeng. On factors affecting minimum ignition temperature of corn starch dust cloud based on interactive orthogonal experiment[J]. Explosion And Shock Waves, 2019, 39(5): 055401. doi: 10.11883/bzycj-2017-0388

On factors affecting minimum ignition temperature of corn starch dust cloud based on interactive orthogonal experiment

doi: 10.11883/bzycj-2017-0388
  • Received Date: 2017-10-30
  • Rev Recd Date: 2017-12-06
  • Available Online: 2019-04-25
  • Publish Date: 2019-05-01
  • In order to evaluate the explosion sensitivity of corn starch dust cloud accurately, to carry out the dust explosion-proof work effectively, and to ensure safe production of grain industry, a series of experiments were performed by using a standard Godbert-Greenwald constant temperature oven device to explore the influence laws of the following factors on the minimum ignition temperature of corn starch dust cloud. These influencing factors include dust concentration, diffusing pressure, the mass fraction of CaCO3, and their interactions. The sensitivities of the minimum ignition temperature of corn starch dust cloud to these influencing factors were investigated on the basis of the interactive orthogonal design method. And the results are close through both the range analysis and the analysis of variance. The mass fraction of CaCO3 and the dust concentration have highly significant effects on the minimum ignition temperature of maize starch cloud. The interaction between the spraying pressure and the dust concentration has significant effects on the minimum ignition temperature of maize starch cloud.
  • loading
  • [1]
    YAN X, YU J. Dust explosion incidents in China [J]. Process Safety Progress, 2012, 31(2): 187–189. DOI: 10.1002/prs.11482.
    [2]
    多英全, 刘垚楠, 胡馨升. 2009~2013年我国粉尘爆炸事故统计分析研究 [J]. 中国安全生产科学技术, 2015, 11(2): 186–190. DOI: 10.11731/j.issn.1673-193x.2015.02.030.

    DUO Yingquan, LIU Yaonan, HU Xinsheng. Statistical analysis on dust explosion accidents occuring in China during 2009−2013 [J]. Journal of Safety Science and Technology, 2015, 11(2): 186–190. DOI: 10.11731/j.issn.1673-193x.2015.02.030.
    [3]
    钟英鹏, 徐冬, 李刚, 等. 镁粉尘云最低着火温度的实验测试 [J]. 爆炸与冲击, 2009, 29(4): 429–433. DOI: 10.11883/1001-1455(2009)04-0429-05.

    ZHONG Yingpeng, XU Dong, LI Gang, et al. Measurement of minimum ignition temperature for magnesium dust cloud [J]. Explosion and Shock Waves, 2009, 29(4): 429–433. DOI: 10.11883/1001-1455(2009)04-0429-05.
    [4]
    WU D, NORMAN F, VERPLAETSEN F, et al. Experimental study on the minimum ignition temperature of coal dust clouds in oxy-fuel combustion atmospheres [J]. Journal of Hazardous Materials, 2016, 307: 274–280. DOI: 10.1016/j.jhazmat.2015.12.051.
    [5]
    ADDAI E K, GABAL D, KRAUSE U. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures [J]. Journal of Hazardous Materials, 2016, 307: 302–311. DOI: 10.1016/j.jhazmat.2016.01.018.
    [6]
    MIAO N, ZHONG S, YU Q. Ignition characteristics of metal dusts generated during machining operations in the presence of calcium carbonate [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 174–179. DOI: 10.1016/j.jlp.2015.12.022.
    [7]
    李刚, 刘晓燕, 钟圣俊, 等. 粮食伴生粉尘最低着火温度的实验研究 [J]. 东北大学学报(自然科学版), 2005, 26(2): 145–147. DOI: 10.3321/j.issn:1005-3026.2005.02.012.

    LI Gang, LIU Xiaoyan, ZHONG Shengjun, et al. Experimental investigation on minimum ignition temperature (MIT) of dust concomitant with grain [J]. Journal of Northeastern University (Natural Science), 2005, 26(2): 145–147. DOI: 10.3321/j.issn:1005-3026.2005.02.012.
    [8]
    YUAN C, LI C, LI G, et al. Ignition temperature of magnesium powder clouds: a theoretical model [J]. Journal of Hazardous Materials, 2012, 239-240(4): 294–301. DOI: 10.1016/j.jhazmat.2012.08.081.
    [9]
    叶亚明, 胡双启, 胡立双, 等. 锰粉尘云最低着火温度的实验研究 [J]. 科学技术及工程, 2016, 16(8): 296–299. DOI: 10.3969/j.issn.1671-1815.2016.08.051.

    YE Yaming, HU Shuangqi, HU Lishuang, et al. Experimental research on minimum ignition temperature of manganese dust cloud [J]. Science Technology and Engineering, 2016, 16(8): 296–299. DOI: 10.3969/j.issn.1671-1815.2016.08.051.
    [10]
    苑春苗. 惰化条件下镁粉爆炸性参数的理论与实验研究[D]. 沈阳:东北大学, 2009: 63−65.
    [11]
    王信群, 黄冬梅, 梁晓瑜. 火灾爆炸理论与预防控制技术[M]. 北京: 冶金工业出版社, 2012: 93−101.
    [12]
    中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. 粉尘云最低着火温度测定方法: GB/T 16429-1996 [S]. 北京:中国标准出版社, 1996.
    [13]
    李云雁, 胡传荣. 试验设计与数据处理[M]. 北京: 化学工业出版社, 2005: 214−215.
    [14]
    刘文卿. 实验设计[M]. 北京: 清华大学出版社, 2005: 71−76.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(7)

    Article Metrics

    Article views (4335) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return