FENG Chun, LI Shihai, ZHENG Bingxu, CUI Xiaorong, JIA Jianjun. Numerical simulation on complete process of three-dimensional bench blasting in an open-pit mine based on CDEM[J]. Explosion And Shock Waves, 2019, 39(2): 024201. doi: 10.11883/bzycj-2017-0393
Citation: FENG Chun, LI Shihai, ZHENG Bingxu, CUI Xiaorong, JIA Jianjun. Numerical simulation on complete process of three-dimensional bench blasting in an open-pit mine based on CDEM[J]. Explosion And Shock Waves, 2019, 39(2): 024201. doi: 10.11883/bzycj-2017-0393

Numerical simulation on complete process of three-dimensional bench blasting in an open-pit mine based on CDEM

doi: 10.11883/bzycj-2017-0393
  • Received Date: 2017-10-30
  • Rev Recd Date: 2018-02-23
  • Publish Date: 2019-02-05
  • Blasting mining is the most important part of the total cost control in an open pit mine, and numerical simulation is an effective method to optimize the design of blasting mining and to analyse blasting effect. By using the continuum-discontinuum element method (CDEM), the three-dimensional bench blasting process of the open pit mine is simulated. The Landau explosive model is adopted to precisely calculate the blasting effect, and the elastic-damage-fracture constitutive law is used to describe the damage and fracture process of rock. By adopting the semi-spring target face and semi-edge target edge combined contact algorithm, the collision, flying and accumulation process of large number of fragments is simulated efficiently. The numerical simulation of the small scale blasting process with the single free surface is carried out. The block distributing curve and volume of the crater obtained by numerical simulation are more or less the same as those obtained by experiment, which demonstrates that CDEM and corresponding models described in this paper are good at simulating the rock blasting process. Based on the blasting technology in the south region in Anqian open-pit mine, a generalized three-dimensional bench blasting model with 3 rows and 21 bore holes is set up, and the complete process from explosive detonation to muckpile formation is carried out. Numerical results show that, except the tensile crack behind the blasting area, the muckpile shape and heaving height obtained by numerical simulation are accordant with the ones obtained by field test to some extent, which demonstrates the feasibility to simulate the three-dimensional bench blasting by CDEM.
  • [1]
    BATTISON R, ESEN S, DUGGAN R, et al. Reducing crest loss at Barrick Cowal Gold Mine[C]//Proceedings of 11th International Symposium on Rock Fragmentation. Carlton Victoria: The Australasian Institute of Mining and Metallurgy, 2015.
    [2]
    GOSWAMI T, MARTIN E, ROTHERY M, et al. A holistic approach to managing blast outcomes[C]//Proceedings of 11th International Symposium on Rock Fragmentation. Carlton Victoria: The Australasian Institute of Mining and Metallurgy, 2015.
    [3]
    MINCHINTON A, LYNCH P M. Fragmentation and heave modelling using coupled discrete element gas flow code[J]. Fragblast, 1997, 1(1):41-57. DOI: 10.1080/13855149709408389.
    [4]
    PREECE D S, TAWADROUS A, SILLING S A, et al. Modelling full-scale blast heave with three-dimensional distinct elements and parallel processing[C]//Proceedings of 11th International Symposium on Rock Fragmentation. Carlton Victoria: The Australasian Institute of Mining and Metallurgy, 2015.
    [5]
    ESEN S, NAGARAJAN M. Muck pile shaping for draglines and dozers at surface coalmines[C]//Proceedings of 11th International Symposium on Rock Fragmentation. Carlton Victoria: The Australasian Institute of Mining and Metallurgy, 2015.
    [6]
    PREECE D S. Rock motion simulation and prediction of porosity distribution for a two-void-level retort[R]. Albuquerque, NM (USA): Sandia National Labs., 1990.
    [7]
    PREECE D S, KNUDSEN S D. Coupled rock motion and gas flow modeling in blasting[R]. Albuquerque, NM (USA): Sandia National Labs., 1991.
    [8]
    TAYLOR L M, PREECE D S. Simulation of blasting induced rock motion using spherical element models[J]. Engineering Computations, 1992, 9(2):243-252. DOI: 10.1108/eb023863.
    [9]
    ONEDERRA I, RUEST M, CHITOMBO G P. Burden movement experiments using the hybrid stress blasting model (HSBM)[C]//Proceedings of EXPLO 2007 Blasting: Techniques and Technology. Wollongong, NSW, Australia: The Australasian Institute of Mining and Metallurgy, 2007, 7(7): 177-183.
    [10]
    SELLERS E, FURTNEY J, ONEDERRA I, et al. Improved understanding of explosive-rock interactions using the hybrid stress blasting model[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2012, 112(8):721-728. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7fb32a0c9105ffc3b986dd310fbcd5c1
    [11]
    ONEDERRA I A, FURTNEY J K, SELLERS E, et al. Modelling blast induced damage from a fully coupled explosive charge[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 58:73-84. DOI: 10.1016/j.ijrmms.2012.10.004.
    [12]
    丁希平.深孔台阶爆破应力场及若干设计参数的数值分析研究[D].北京: 铁道部科学研究院, 2001. http://cdmd.cnki.com.cn/Article/CDMD-83801-2001009740.htm
    [13]
    璩世杰, 刘际飞.节理角度对预裂爆破成缝效果的影响研究[J].岩土力学, 2015, 36(1):189-194. DOI: 10.16285/j.rsm.2015.01.026.

    QU Shijie, LIU Jifei. Numerical analysis of joint angle effect on cracking with presplit blasting[J]. Rock and Soil Mechanics, 2015, 36(1):189-194. DOI: 10.16285/j.rsm.2015.01.026.
    [14]
    HU Yingguo, LU Wenbo, CHEN Ming, et al. Numerical simulation of the complete rock blasting response by SPH-DAM-FEM approach[J]. Simulation Modelling Practice and Theory, 2015, 56:55-68. DOI: 10.1016/j.simpat.2015.04.001.
    [15]
    谢冰, 李海波, 王长柏, 等.节理几何特征对预裂爆破效果影响的数值模拟[J].岩土力学, 2011, 32(12):3812-3820. DOI: 10.3969/j.issn.1000-7598.2011.12.044.

    XIE Bing, LI Haibo, WANG Changbai, et al. Numerical simulation of presplit blasting influenced by geometrical characteristics of joints[J]. Rock and Soil Mechanics, 2011, 32(12):3812-3820. DOI: 10.3969/j.issn.1000-7598.2011.12.044.
    [16]
    周旺潇, 严鹏, 郑炳旭, 等.爆破漏斗形成过程数值模拟的几个关键问题[J].爆破, 2014, 31(3):15-22. DOI: 10.3963/j.issn.1001-487X.2014.03.004.

    ZHOU Wangxiao, YAN Peng, ZHENG Bingxu, et al. Key problems in simulation of formation process of blasting crater[J]. Blasting, 2014, 31(3):15-22. DOI: 10.3963/j.issn.1001-487X.2014.03.004.
    [17]
    YAN Peng, ZHOU Wangxiao, LU Wenbo, et al. Simulation of bench blasting considering fragmentation size distribution[J]. International Journal of Impact Engineering, 2015, 90:132-145. DOI: 10.1016/j.ijimpeng.2015.11.015.
    [18]
    TRIVINO L F, MOHANTY B. Assessment of crack initiation and propagation in rock from explosion-induced stress waves and gas expansion by cross-hole seismometry and FEM-DEM method[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77:287-299. DOI: 10.1016/j.ijrmms.2015.03.036.
    [19]
    甯尤军, 杨军, 陈鹏万.节理岩体爆破的DDA方法模拟[J].岩土力学, 2010, 31(7):2259-2263. DOI: 10.3969/j.issn.1000-7598.2010.07.040.

    NING Youjun, YANG Jun, CHEN Pengwan. Numerical simulation of rock blasting in jointed rock mass by DDA method[J]. Rock and Soil Mechanics, 2010, 31(7):2259-2263. DOI: 10.3969/j.issn.1000-7598.2010.07.040.
    [20]
    郑炳旭, 冯春, 宋锦泉, 等.炸药单耗对赤铁矿爆破块度的影响规律数值模拟研究[J].爆破, 2015, 32(3):62-69. DOI: 10.3963/j.issn.1001-487X.2015.03.011.

    ZHENG Bingxu, FENG Chun, SONG Jinquan, et al. Numerical study on relationship between specific charge and fragmentation distribution of hematite[J]. Blasting, 2015, 32(3):62-69. DOI: 10.3963/j.issn.1001-487X.2015.03.011.
    [21]
    LI S H, WANG J G, LIU B S, et al. Analysis of critical excavation depth for a jointed rock slope using a face-to-face discrete element method[J]. Rock Mechanics and Rock Engineering, 2007, 40(4):331-348. DOI: 10.1007/s00603-006-0084-9.
    [22]
    WANG Yuannian, ZHAO Manhong, LI Sihai et al. Stochastic structural model of rock and soil aggregates by continumm-based discrete element method[J]. Scinece in China:Series E:Engineering and Materials Science, 2005, 48(suppl):95-106. DOI: 10.1360/04zze13.
    [23]
    FENG Chun, LI Shihai, LIU Xiaoyu, et al. A semi-spring and semi-edge combined contact model in CDEM and its application to analysis of Jiweishan landslide[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(1):26-35. DOI: 10.1016/j.jrmge.2013.12.001.
    [24]
    冯春, 李世海, 刘晓宇.半弹簧接触模型及其在边坡破坏计算中的应用[J].力学学报, 2011, 43(1):184-192. DOI: 10.6052/0459-1879-2011-1-lxxb2010-080.

    FENG Chun, LI Shihai, LIU Xiaoyu. Semi-spring contact model and its application to failure simulation of slope[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1):184-192. DOI: 10.6052/0459-1879-2011-1-lxxb2010-080.
    [25]
    段宗银, 施发伍, 张良贵.爆破块度分布与控制的模拟试验研究[J].爆破, 2010, 27(2):45-48;83. DOI: 10.3963/j.issn.1001-487X.2010.02.012.

    DUAN Zongyin, SHI Fawu, ZHANG Lianggui. Simulation test on distribution and control of blasting fragmentation[J]. Blasting, 2010, 27(2):45-48;83. DOI: 10.3963/j.issn.1001-487X.2010.02.012.
  • Relative Articles

    [1]LIU Yulong, WANG Yinjun, HUANG Lei, WU Chunping, YAN Guobin, ZHANG Yang, WANG Wentao, YU Mengfei. Process and mechanism of blasting damage and fracture of calcium conglomerate in Hushan ranium mine[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0361
    [2]FEI Honglu, WANG Tianheng, JING Guangjie. On mechanism and prevention of sympathetic detonation of bench blasting in water-rich fissure open-pit mine[J]. Explosion And Shock Waves, 2025, 45(1): 015202. doi: 10.11883/bzycj-2024-0064
    [3]LIU Shicheng, GAO Chunyu, ZHOU Shengbing. Three-dimensional numerical study on influences of uneven equivalence ratio on performances of a rotating detonation combustor[J]. Explosion And Shock Waves, 2024, 44(5): 052101. doi: 10.11883/bzycj-2023-0220
    [4]REN Kai, ZHOU Hongjing, YANG Chen. A two-step iterative method for damage calculation of a ship hullsubjected to underwater close-up non-contact explosion[J]. Explosion And Shock Waves, 2023, 43(4): 044201. doi: 10.11883/bzycj-2022-0116
    [5]ZHU Xinguang, FENG Chun, WANG Xinquan, CHENG Pengda, GAO Shengyuan. A one-dimensional axisymmetric explosive model and its application in bench blasting simulation[J]. Explosion And Shock Waves, 2022, 42(11): 115202. doi: 10.11883/bzycj-2021-0276
    [6]ZHANG Yuhang, CHEN Qingqing, ZHANG Jie, WANG Zhiyong, LI Zhiqiang, WANG Zhihua. 3D mesoscale modeling method and dynamic mechanical properties investigation of concrete[J]. Explosion And Shock Waves, 2019, 39(5): 054205. doi: 10.11883/bzycj-2018-0408
    [7]HAN Liang, LIU Dianshu, XIN Chongwei, LIANG Shufeng, LING Tianlong, WU Yu, LI Chen. Trend removing methods of vibration signals of deep hole bench blasting in near field[J]. Explosion And Shock Waves, 2018, 38(5): 1006-1012. doi: 10.11883/bzycj-2016-0194
    [8]CHEN Yang, WU Liang, XU Feng, LU Shuai. Dynamic response of existing large oil storage tank under blasting excavation vibration[J]. Explosion And Shock Waves, 2018, 38(6): 1394-1403. doi: 10.11883/bzycj-2017-0128
    [9]Zhang Sheng, Ling Tonghua, Cao Feng, Huang Kan. Application of removal trend method of pattern adapted continuous wavelet to blast vibration signal analysis[J]. Explosion And Shock Waves, 2017, 37(2): 255-261. doi: 10.11883/1001-1455(2017)02-0255-07
    [10]Zhong Guosheng, Ao Liping, Fu Yuhua. Model experimental studies of vibration effect and damage evolution of tunnel's surrounding rock under cyclic blasting excavation[J]. Explosion And Shock Waves, 2016, 36(6): 853-860. doi: 10.11883/1001-1455(2016)06-0853-08
    [11]LI Lei, SHEN Zhao-wu, LI Xue-ling, NI Xiao-jun. ApplicationofSPH methodtonumericalsimulationofshapedchargejet[J]. Explosion And Shock Waves, 2012, 32(3): 316-322. doi: 10.11883/1001-1455(2012)03-0316-07
    [12]YANG Jian-hua, LU Wen-bo, CHEN Ming, ZHOU Chuang-bing. Anequivalentsimulationmethodforblastingvibrationofsurroundingrock[J]. Explosion And Shock Waves, 2012, 32(2): 157-163. doi: 10.11883/1001-1455(2012)02-0157-07
    [13]YU Yun-yan. Transient response of a damaged continuous beam[J]. Explosion And Shock Waves, 2009, 29(1): 61-66. doi: 10.11883/1001-1455(2009)01-0061-06
    [14]LI Yun-peng, AI Chuan-zhi, HAN Chang-ling, HUO Ming. Study on dynamics effect caused by blasting construction by numerical simulation for tunnels with small spacing[J]. Explosion And Shock Waves, 2007, 27(1): 75-81. doi: 10.11883/1001-1455(2007)01-0075-07
  • Cited by

    Periodical cited type(37)

    1. 郭天魁,王旭东,曲占庆,王继伟,丁志睿,杨珂笼,马贵颖. 多级燃爆压裂及复合压裂数值模拟. 深圳大学学报(理工版). 2025(01): 50-58 .
    2. 徐振洋,郇宝乾,李萍丰,王雪松,周成平. 爆堆自适应分层的块度空间分布测量方法研究. 爆破. 2024(01): 27-36+50 .
    3. 王朝语. 沙特NEOM隧道项目BIM与GIS关键技术研究. 施工技术(中英文). 2024(07): 6-9 .
    4. 黄永辉,李永杰,杨阳,熊卫国,张智宇. 露天爆破中炸药单耗对岩石破碎块度的数值模拟研究. 工程科学学报. 2024(06): 973-981 .
    5. 张肯,于燕,刘犇,张建华,黄刚,李江江,Eric Munene Kinyua. 基于GDEM-BlockDyna的不同装药结构对爆堆形态影响研究. 爆破. 2024(02): 127-135 .
    6. 卢文波,孟婷,胡英国. 岩石爆破破碎模拟和块度预报的研究现状与展望. 工程爆破. 2024(05): 20-28 .
    7. 胡英国,李庚泉,徐辰宇,杨招伟,董源,刘美山. 筑坝级配料爆破开采数值仿真与应用. 工程爆破. 2024(05): 226-236 .
    8. 赵鑫,刘殿书,梁书峰,田帅康,于美鲁,莫麟,金长宇. 基于神经网络的爆堆数值模拟力学参数确定研究. 北京理工大学学报. 2024(11): 1116-1127 .
    9. 于佳兴,刘艳章,秦绍兵,黄诗冰,李福佳,肖一鸣. 基于巷道群围岩稳定性的无底柱分段崩落法采场落矿顺序优选. 矿业研究与开发. 2024(12): 31-38 .
    10. 王继伟,曲占庆,郭天魁,陈铭,吕明锟,王旭东. 基于CDEM的页岩甲烷原位燃爆压裂数值模拟. 中国石油大学学报(自然科学版). 2023(01): 106-115 .
    11. 李赟鹏,冯盼学,冯春,张一鸣. 集束孔掏槽爆破破岩机理研究. 力学与实践. 2023(01): 90-99 .
    12. 路扬,冯春,程鹏达,张一鸣. 车轮-地面耦合动力学行为的CDEM-DEM分析. 光学精密工程. 2023(05): 746-756 .
    13. 赵志鹏,闫瑞兵,丛俊余. 坚硬顶板超前深孔预裂爆破类型及效果评价分析. 煤炭科学技术. 2023(03): 68-76 .
    14. 雷涛,康普林,叶海旺,李宁,王其洲. 基于连续-非连续模拟的台阶爆破抛掷堆积仿真实验研究. 实验技术与管理. 2023(05): 116-121 .
    15. 侯慧珍,张耀辉,李栋广,王金元,周航. 基于连续—非连续单元法复合岩土体穿层预应力锚杆受力分析. 科学技术与工程. 2023(18): 7903-7912 .
    16. 范勇,吴进高,冷振东,杨广栋,崔先泽,高启栋. 爆破漏斗岩石破碎块度实验与仿真. 岩石力学与工程学报. 2023(09): 2125-2139 .
    17. 甘建锋,钟运平,饶法强,秦凯强,曹汝洋,张一鸣. 基于连续-非连续单元法的预应力斜拉桥桥面板裂缝成因分析. 科技导报. 2023(11): 113-124 .
    18. 郑飞,邓庆龙,李芷,王培瑞,靳陆,焦玉勇. 分段黏结非连续变形分析方法及其在砂岩破裂分析中的应用. 煤炭学报. 2023(09): 3372-3383 .
    19. 江巍,齐志宇,邓华锋,徐建城,王彦海. 坡脚岩体劣化条件下库区软硬互层反倾岩质边坡的破坏机制和稳定性. 土木工程学报. 2023(S1): 181-193 .
    20. 姚作强,冯春,刘天苹. 爆炸载荷下顺层台阶边坡渐进破坏规律数值分析. 力学与实践. 2023(06): 1363-1374 .
    21. 刘占全,王德胜,崔凤,徐晓东,郭建新,赵宇. 巴润矿矿岩混合复杂爆区爆破分离技术试验研究. 金属矿山. 2022(01): 136-141 .
    22. 苗作华,谢媛,任磊,王梦婷,汤阳. 基于三维可视化的爆堆形态灰色敏感度分析. 金属矿山. 2022(02): 83-89 .
    23. 张文照,崔庆宝. 露天矿爆破振动对边坡的影响及其预测分析. 世界有色金属. 2022(07): 172-174 .
    24. 谢先启,黄小武,姚颖康,何理,伍岳. 露天深孔台阶精细爆破技术研究进展. 金属矿山. 2022(07): 7-18 .
    25. 魏东,陈明,卢文波,李康贵,王高辉. 岩体性能变化条件下台阶爆破根底的产生机制研究. 岩土力学. 2022(S1): 490-500 .
    26. 朱心广,冯春,王心泉,程鹏达,高圣元. 一维轴对称杆件爆源模型及其在台阶爆破模拟中的应用. 爆炸与冲击. 2022(11): 145-155 . 本站查看
    27. 白雪元,王学滨,刘桐辛. 考虑单元劈裂的流-固耦合连续-非连续方法及定向水力压裂模拟. 计算力学学报. 2022(05): 633-640 .
    28. 肖建成,卢景景,周辉,徐福通,冯春. 贯入角度对截齿破岩性能与几何排布的影响研究. 岩土力学. 2022(12): 3372-3384 .
    29. 任慧敏,冯春,唐昊天,张大帅,王彪,赵红华. 基于CDEM的岩石基坑爆破效果的数值模拟. 工程爆破. 2022(06): 15-24+41 .
    30. 李涛,张丽,蒋庆,冯春,赵然. 基于GDEM的隐伏岩溶隧道隔水岩体水压致裂安全厚度及破裂演化规律分析. 隧道建设(中英文). 2021(01): 67-76 .
    31. 张亚宾,艾蕊,谭志远. 冲击荷载下石灰岩裂纹扩展规律研究. 矿业研究与开发. 2021(10): 79-83 .
    32. 杨茂森,陈永祥,郝润华. 露天煤矿超高台阶抛掷爆破振动效应评价. 爆破. 2021(04): 156-162 .
    33. 高慧,冯春,朱心广,张一鸣,王向刚,辛星,申永利,孙子正. 基于连续-非连续元三维煤层气压裂开采分析. 山东大学学报(工学版). 2021(06): 119-128 .
    34. 杨仁树,李炜煜,杨国梁,马鑫民. 炸药类型对富铁矿爆破效果影响的试验研究. 爆炸与冲击. 2020(06): 96-107 . 本站查看
    35. 王帷先,孙健东,张瑞新,狐为民,张曌,刘嵘. 抛掷爆破爆堆形态的标准化分析处理方法研究. 煤炭工程. 2020(10): 109-115 .
    36. 赵毅鑫,孙荘,宋红华,赵士琦. 煤Ⅰ型动态断裂裂纹扩展规律试验与数值模拟研究. 煤炭学报. 2020(12): 3961-3972 .
    37. 赵海军,Dwayne Tannant,郭捷,冯雪磊,马凤山. 基于连续-非连续方法的裂隙破坏与相互作用研究. 工程地质学报. 2019(05): 933-945 .

    Other cited types(30)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (6693) PDF downloads(88) Cited by(67)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return