Volume 39 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
LI Xiaojie, YANG Chenchen, YAN Honghao, WANG Xiaohong, WANG Yuxin, ZHANG Chengjiao. Numerical study of near-field underwater explosion of cylindrical aluminized explosive by the method of characteristics[J]. Explosion And Shock Waves, 2019, 39(2): 022301. doi: 10.11883/bzycj-2017-0412
Citation: LI Xiaojie, YANG Chenchen, YAN Honghao, WANG Xiaohong, WANG Yuxin, ZHANG Chengjiao. Numerical study of near-field underwater explosion of cylindrical aluminized explosive by the method of characteristics[J]. Explosion And Shock Waves, 2019, 39(2): 022301. doi: 10.11883/bzycj-2017-0412

Numerical study of near-field underwater explosion of cylindrical aluminized explosive by the method of characteristics

doi: 10.11883/bzycj-2017-0412
  • Received Date: 2017-04-12
  • Rev Recd Date: 2018-01-31
  • Publish Date: 2019-02-05
  • Based on the previously proposed method of characteristics containing an entropy variate, the non-ideal effect of aluminum combustion is portrayed by controlling the energy release in non-isentropic flow. Combined with a simple Chapman-Jouguet model and a JWL-Miller equation of state, it is obtained the near-field parameters for the underwater explosion of the cylindrical aluminized explosive. Comparing the simulation results with the experimental data, it is found that this method can give a good prediction for the propagation of shock wave and the bubble expansion of detonation products as well as the reflection of internal compression wave. The results show that this method can be applied to the near-field calculation of underwater explosion of aluminum explosive, and even the evaluation of explosive performance or the estimation of underwater energy output.
  • loading
  • [1]
    陈朗.含铝炸药爆轰[M].北京:国防工业出版社, 2004:11-17.
    [2]
    刘建湖.舰船非接触水下爆炸动力学的理论与应用[D].无锡: 中国船舶科学研究中心, 2002: 2-32. http://cdmd.cnki.com.cn/Article/CDMD-86205-2002091208.htm
    [3]
    陈朗, 冯长根, 黄毅民.含铝炸药圆筒试验及爆轰产物JWL状态方程研究[J].火炸药学报, 2001, 24(3):13-15. DOI: 10.3969/j.issn.1007-7812.2001.03.005.

    CHEN Lang, FENG Changgen, HUANG Yimin. The cylinder test and jwl equation of state detontion product of aluminized explosives[J]. Chinese Journal of Explosives and Propellants, 2001, 24(3):13-15. DOI: 10.3969/j.issn.1007-7812.2001.03.005.
    [4]
    冯晓军, 王晓峰, 李媛媛, 等.铝粉粒度和爆炸环境对含铝炸药爆炸能量的影响[J].火炸药学报, 2013, 36(6):24-27. DOI: 10.3969/j.issn.1007-7812.2013.06.004.

    FENG Xiaojun, WANG Xiaofeng, LI Yuanyuan, et al. Effect of aluminum particle size and explosion atmosphere on the energy of explosion of aluminized explosive[J]. Chinese Journal of Explosives and Propellants, 2013, 36(6):24-27. DOI: 10.3969/j.issn.1007-7812.2013.06.004.
    [5]
    KEICHER T, HAPP A, KRETSCHMER A, et al. Influence of aluminium/ammonium perchlorate on the performance of underwater explosives[J]. Propellants, Explosives, Pyrotechnics, 1999, 24(3):140-143. DOI: 10.1002/(SICI)1521-4087(199906)24:033.0.CO;2-3
    [6]
    KUMAR A S, RAO V B, SINHA R K, et al. Evaluation of plastic bonded explosive (PBX) formulations based on RDX, aluminum, and HTPB for underwater applications[J]. Propellants, Explosives, Pyrotechnics, 2010, 35(4):359-364. DOI: 10.1002/prep.200800048.
    [7]
    ZHANG F, ANDERSON J, YOSHINAKA A. Post-detonation energy release from tnt-aluminum explosives[C]//Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2007: 885-888. DOI: 10.1063/1.2833268.
    [8]
    蒋小华, 龙新平, 何碧, 等.有氧化剂(AP)含铝炸药的爆轰性能[J].爆炸与冲击, 2005, 25(1):26-30. DOI: 10.3321/j.issn:1001-1455.2005.01.005.

    JIANG Xiaohua, LONG Xinping, HE Bi, et al. Numerical simulation of detonation in aluminized explosives containing oxidiser (AP)[J]. Explosion and Shock Waves, 2005, 25(1):26-30. DOI: 10.3321/j.issn:1001-1455.2005.01.005.
    [9]
    胡栋, 孙珠妹.铝粉颗粒度对黑索金含铝炸药粉快速反应影响的微观特性研究[J].爆炸与冲击, 1995, 15(2):122-128. http://www.bzycj.cn/article/id/10565

    HU Dong, SUN Zhumei. Studies on the micro-behaviour of the influence of the aluminum particle size on the high speed reaction for RDX powder containing aluminum[J]. Explosion and Shock Waves, 1995, 15(2):122-128. http://www.bzycj.cn/article/id/10565
    [10]
    陈朗, 张寿齐, 赵玉华.不同铝粉尺寸含铝炸药加速金属能力的研究[J].爆炸与冲击, 1999, 19(3):250-255. DOI: 10.3321/j.issn:1001-1455.1999.03.010.

    CHEN Lang, ZHANG Shouqi, ZHAO Yuhua. Study of the metal acceleration capacities of aluminized explosives with spherical aluminum particles of different diameter[J]. Explosion and Shock Waves, 1999, 19(3):250-255. DOI: 10.3321/j.issn:1001-1455.1999.03.010.
    [11]
    韩勇, 黄辉, 黄毅民, 等.不同直径含铝炸药的作功能力[J].火炸药学报, 2008, 31(6):5-7. DOI: 10.3969/j.issn.1007-7812.2008.06.002.

    HAN Yong, HUANG Hui, HUANG Yimin, et al. Power of aluminized explosives with different diameters[J]. Chinese Journal of Explosives and Propellants, 2008, 31(6):5-7.DOI: 10.3969/j.issn.1007-7812.2008.06.002.
    [12]
    计冬奎, 高修柱, 肖川, 等.含铝炸药作功能力和JWL状态方程尺寸效应研究[J].兵工学报, 2012, 31(5):552-555. http://d.old.wanfangdata.com.cn/Periodical/bgxb201205007

    JI Dongkui, GAO Xiuzhu, XIAO Chuan, et al. Study on dimension effect of accelerating ability and JWL equation of state for aluminized explosive[J]. Acta Armamentarii, 2012, 31(5):552-555. http://d.old.wanfangdata.com.cn/Periodical/bgxb201205007
    [13]
    周霖, 徐更光.含铝炸药水中爆炸能量输出结构[J].火炸药学报, 2003, 26(1):30-32. DOI:0.3969/j.issn.1007-7812.2003.01.009.

    ZHOU Lin, XU Gengguang. Configuration of underwater energy output for aluminized explosive mixtures[J]. Chinese Journal of Explosives and Propellants, 2003, 26(1):30-32. DOI: 10.3969/j.issn.1007-7812.2003.01.009.
    [14]
    赵继波, 李金河, 谭多望, 等.铝氧比对水中爆炸近场冲击波的影响[J].含能材料, 2009, 17(4):420-423. DOI: 10.3969/j.issn.1006-9941.2009.04.011.

    ZHAO Jibo, LI Jinhe, TAN Duowang, et al. Effects of ratios of aluminum to oxygen on shock wave of cylindrical charge at underwater explosive close-field[J]. Chinese Journal of Energetic Materials, 2009, 17(4):420-423. DOI: 10.3969/j.issn.1006-9941.2009.04.011.
    [15]
    林谋金, 马宏昊, 沈兆武, 等.RDX基铝薄膜炸药与铝粉炸药水下爆炸性能比较[J].化工学报, 2014, 65(2):752-758. DOI: 10.3969/j.issn.0438-1157.2014.02.054.

    LIN Moujin, MA Honghao, SHEN Zhaowu, et al. Difference in underwater detonation between RDX based aluminum film and aluminum particle explosives[J]. Journal of Chemical Industry and Engineering (China), 2014, 65(2):752-758. DOI: 10.3969/j.issn.0438-1157.2014.02.054.
    [16]
    胡宏伟, 严家佳, 陈朗, 等.铝粉含量和粒度对CL-20含铝炸药水中爆炸反应特性的影响[J].爆炸与冲击, 2017, 37(1):157-161. DOI: 10.11883/1001-1455(2017)01-0157-05.

    HU Hongwei, YAN Jiajia, CHEN Lang, et al. Effect of aluminum powder content and its particle size on reaction characteristics for underwater explosion of CL-20-based explosives containing aluminum[J]. Explosion and Shock Waves, 2017, 37(1):157-161. DOI: 10.11883/1001-1455(2017)01-0157-05.
    [17]
    HOWARD W M, FRIED L E, SOUERS P C. Kinetic modeling of non-ideal explosives with CHEETAH[C]//The Eleventh International Symposium on Detonation. Snowmass, Colorado, USA: Lawrence Livermore National Laboratory, 1998: 998-1006.
    [18]
    LEE J, KUK J H, CHO Y S, et al. Numerical modeling of underwater explosion properties for an aluminized explosive[J]. Propellants, Explosives, Pyrotechnics, 1997, 22(6):337-346. DOI: 10.1002/prep.19970220608.
    [19]
    LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives[J]. Physics of Fluids, 1980, 23(12):2362-2372. DOI: 10.1063/1.862940.
    [20]
    MILLER P J, GUIRGUIS R H. Experimental study and model calculations of metal combustion in al/ap underwater explosives[J]. MRS Online Proceedings Library Archive, 1992:296-299. DOI: 10.1557/PROC-296-299.
    [21]
    LU J P, KENNEDY D L. Modelling of PBXW-115 using Kinetic CHEETAH and the DYNA codes: DSTO-TR-1496[R]. Australia: Defence Science and Technology Organisation(DSTO), 2003.
    [22]
    辛春亮, 徐更光, 刘科种, 等.含铝炸药Miller能量释放模型的应用[J].含能材料, 2008, 16(4):436-440. DOI: 10.3969/j.issn.1006-9941.2008.04.018.

    XIN Chunliang, XU Gengguang, LIU Kezhong, et al. Application of miller energy release model for aluminized explosive[J]. Chinese Journal of Energetic Materials, 2008, 16(4):436-440. DOI: 10.3969/j.issn.1006-9941.2008.04.018.
    [23]
    荣吉利, 项大林, 李健, 等.含铝炸药水下爆炸特性研究[J].北京理工大学学报, 2012, 32(3):221-225. DOI: 10.3969/j.issn.1001-0645.2012.03.001.

    RONG Jili, XIANG Dalin, LI Jian, et al. Study on underwater explosion character of aluminized explosive[J]. Transactions of Beijing Institute of Technology, 2012, 32(3):221-225. DOI: 10.3969/j.issn.1001-0645.2012.03.001.
    [24]
    SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1988, 7(2):439-471. DOI: 10.1016/0021-9991(88)90177-5.
    [25]
    YANG H Q, PRZEKWAS A J. A comparative study of advanced shock-capturing shcemes applied to Burgers' equation[J]. Journal of Computational Physics, 1992, 102(1):139-159. DOI: 10.1016/S0021-9991(05)80012-9.
    [26]
    LI X J, ZHANG C C, WANG X H, et al. Numerical study of underwater shock wave by a modified method of characteristics[J]. Journal of Applied Physics, 2014, 115(10):104905. DOI: 10.1063/1.4868360.
    [27]
    李晓杰, 张程娇, 闫鸿浩, 等.水下爆炸近场非均熵流的特征线差分解法[J].爆炸与冲击, 2012, 32(6):604-608. DOI: 10.3969/j.issn.1001-1455.2012.06.008.

    LI Xiaojie, ZHANG Chengjiao, YAN Honghao, et al. Difference method of characteristics in isentropic flow of underwater explosion in near-field region[J]. Explosion and Shock Waves, 2012, 32(6):604-608. DOI: 10.3969/j.issn.1001-1455.2012.06.008.
    [28]
    李晓杰, 杨晨琛, 张程娇, 等.水下爆炸非均熵二维定常流的三族特征线解法[J].爆炸与冲击, 2018, 38(4):847-853. DOI: 10.11883/bzycj-2016-0314.

    LI Xiaojie, YANG Chenchen, ZHANG Chengjiao, et al. A FDM of three characteristic lines of two-dimensional non-isentropic steady flow of cylindrical explosive underwater explosion[J]. Explosion and Shock Waves, 2018, 38(4):847-853. DOI: 10.11883/bzycj-2016-0314.
    [29]
    STEBNOVSKⅡ S V, CHERNOBAEV N N. Initial stage of an underwater explosion of cylindrical charges with foliated cases[J]. Combustion, Explosion and Shock Waves, 1982, 18(3):358-362. DOI: 10.1007/BF00783052.
    [30]
    YANG C C, Li X J, Zhang C J. Numerical study of two-dimensional cylindrical underwater explosion by a modified method of characteristics[J]. Journal of Applied Physics, 2017, 122(10):105903. DOI: 10.1063/1.4986881.
    [31]
    高执棣.化学热力学基础[M].北京:北京大学出版社, 2006.
    [32]
    陈朗, 冯长根, 赵玉华, 等.含铝炸药爆轰数值模拟研究[J].北京理工大学学报, 2001, 21(4):415-419. DOI: 10.3969/j.issn.1001-0645.2001.04.003.

    CHEN Lang, FENG Changgen, ZHAO Yuhua, et al. Numerical simulations of the detonation of aluminized explosives[J]. Transactions of Beijing Institute of Technology, 2001, 21(4):415-419. DOI: 10.3969/j.issn.1001-0645.2001.04.003.
    [33]
    裴红波, 聂建新, 覃剑峰.基于非平衡多相模型的含铝炸药爆速研究[J].爆炸与冲击, 2013, 33(3):311-314. DOI: 10.3969/j.issn.1001-1455.2013.03.015.

    PEI Hongbo, NIE Jianxin, QIN Jianfeng. Investigation on detonation velocity of aluminized explosives based on disequilibrium multiphase model[J]. Explosion and Shock Waves, 2013, 33(3):311-314. DOI: 10.3969/j.issn.1001-1455.2013.03.015.
    [34]
    TARVER C M, TAO W C, LEE C G. Sideways plate push test for detonating solid explosives[J]. Propellants, Explosives, Pyrotechnics, 1996, 21(5):238-246. DOI: 10.1002/prep.19960210506.
    [35]
    沈飞, 王辉, 袁建飞, 等.含铝炸药水下滑移爆轰实验研究[J].实验力学, 2014, 29(5):641-646. DOI: 10.7520/1001-4888-13-202.

    SHEN Fei, WANG Hui, YUAN Jianfei, et al. Experimental study of underwater sliding detonation of aluminized explosives[J]. Journal of Experimental Mechanics, 2014, 29(5):641-646. DOI: 10.7520/1001-4888-13-202.
    [36]
    AUTODYNA: interactive non-linear dynamic analysis software version 13: user's manual[M]. SAS IP Inc., 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (6838) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return