Citation: | WEN Zhu, QIU Yanyu, ZI Min, ZHAO Zhangyong, WANG Mingyang. Experimental study on quasi-one-dimensional strain compression of calcareous sand[J]. Explosion And Shock Waves, 2019, 39(3): 033101. doi: 10.11883/bzycj-2018-0015 |
[1] |
刘崇权, 单华刚, 汪稔. 钙质土工程特性及其桩基工程 [J]. 岩石力学与工程学报, 1999(3): 331–335 doi: 10.3321/j.issn:1000-915.1999.03.021
LIU Chongquan, SHAN Huagang, WANG Ren. The geotechnical characters of calcareous soils and the pile foundation engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 1999(3): 331–335 doi: 10.3321/j.issn:1000-915.1999.03.021
|
[2] |
单华刚, 汪稔. 钙质砂中的桩基工程研究进展述评 [J]. 岩土力学, 2000, 21(3): 299–308 doi: 10.3969/j.issn.1000-7598.2000.03.027
SHAN Huagang, WANG Ren. Development of study on pile in calcareous sand [J]. Rock and Soil Mechanics, 2000, 21(3): 299–308 doi: 10.3969/j.issn.1000-7598.2000.03.027
|
[3] |
COOP M R. The mechanics of uncommented carbonate sands [J]. Géotechnique, 1990, 40(40): 607–626. doi: 10.1680/geot.1990.40.4.607
|
[4] |
AIREY D W. Triaxial testing of naturally cemented carbonate soil [J]. Journal of Geotechnical Engineering, 1993, 119(9): 1379–1398. doi: 10.1061/(ASCE)0733-9410(1993)119:9(1379)
|
[5] |
刘崇权, 杨志强, 汪稔. 钙质土力学性质研究现状与进展 [J]. 岩土力学, 1995, 16(4): 74–84 doi: 10.16285/j.rsm.1995.04.010
LIU Chongquan, SHAN Huagang, WANG Ren. The present condition and development in studies of mechanical properties of calcareous [J]. Rock and Soil Mechanics, 1995, 16(4): 74–84 doi: 10.16285/j.rsm.1995.04.010
|
[6] |
张家铭, 汪稔, 张阳明, 等. 土体颗粒破碎研究进展 [J]. 岩土力学, 2003(s2): 661–665 doi: 10.16285/j.rsm.2003.s2.158
ZHANG Jiaming, WANG Ren, ZHANG Yangming, et al. Advance in studies of soil grain crush [J]. Rock and Soil Mechanics, 2003(s2): 661–665 doi: 10.16285/j.rsm.2003.s2.158
|
[7] |
张家铭, 邵晓泉, 王霄龙, 等. 沉桩过程中钙质砂颗粒破碎特性模拟研究 [J]. 岩土力学, 2015, 36(1): 272–278 doi: 10.16285/j.rsm.2015.01.037
ZHANG Jiaming, SHAO Xiaoquan, WANG Xiaolong, et al. Discrete element simulation of crushing behavior of calcareous sands during pile jacking [J]. Rock and Soil Mechanics, 2015, 36(1): 272–278 doi: 10.16285/j.rsm.2015.01.037
|
[8] |
KAGGWA W S, BOOKER J R, CARTER J P. Residual strains in calcareous sand due to irregular cyclic loading [J]. Journal of Geotechnical Engineering, 1991, 117(2): 201–218. doi: 10.1061/(ASCE)0733-9410(1991)117:2(201)
|
[9] |
KNODEL P C, AL-DOURI R H, POULOS H G. Static and cyclic direct shear tests on carbonate sands [J]. Geotechnical Testing Journal, 1992, 15(2). doi: 10.1520/GTJ10236J
|
[10] |
虞海珍, 汪稔, 赵文光, 等. 波浪荷载下钙质砂孔压增长特性的试验研究 [J]. 武汉理工大学学报, 2006, 28(11): 86–89 doi: 10.3321/j.issn:1671-4431.2006.11.026
YU Haizhen, WANG Ren, ZHAO Wenguang, et al. Experimental research on development pattern of pore water pressure of carbonate sand under wave loads [J]. Journal of Wuhan University of Technology, 2006, 28(11): 86–89 doi: 10.3321/j.issn:1671-4431.2006.11.026
|
[11] |
虞海珍. 复杂应力条件下饱和钙质砂动力特性的试验研究[D]. 武汉: 华中科技大学, 2006. DOI: 10.7666/d.d048504.
|
[12] |
刘汉龙, 胡鼎, 肖杨, 等. 钙质砂动力液化特性的试验研究 [J]. 防灾减灾工程学报, 2015(6): 707–711 doi: 10.13409/j.cnki.jdpme.2015.06.001
LIU Hanlong, HU Ding, XIAO Yang, et al. Test study on dynamic liquefaction characteristics of calcareous sand [J]. Journal of Disaster Prevention and Mitigation Engineering, 2015(6): 707–711 doi: 10.13409/j.cnki.jdpme.2015.06.001
|
[13] |
徐学勇, 汪稔, 王新志, 等. 饱和钙质砂爆炸响应动力特性试验研究 [J]. 岩土力学, 2012, 33(10): 402–414 doi: 10.16285/j.rsm.2012.10.005
XU Xueyong, WANG Ren, WANG Xinzhi, et al. Experimental study of dynamic behavior of saturated calcareous sand due to explosion [J]. Rock and Soil Mechanics, 2012, 33(10): 402–414 doi: 10.16285/j.rsm.2012.10.005
|
[14] |
SONG B, CHEN W, LUK V. Impact compressive response of dry sand [J]. Mechanics of Materials, 2009, 41(6): 777–785. doi: 10.1016/j.mechmat.2009.01.003
|
[15] |
BRAGOV A M, LOMUNOV A K, SERGEICHEV I V, et al. Determination of physic mechanical properties of soft soils from medium to high strain rates [J]. International Journal of Impact Engineering, 2008, 35(9): 967–976. doi: 10.1016/j.ijimpeng.2007.07.004
|
[16] |
郑文, 徐松林, 胡时胜. 侧限压缩下干燥砂的动态力学性能 [J]. 爆炸与冲击, 2011, 31(6): 619–623 doi: 10.11883/1001-1455(2011)06-0619-05
ZHENG Wen, XU Songlin, HU Shisheng. Dynamic mechanical properties of dry sand under confined compression [J]. Explosion and Shock Waves, 2011, 31(6): 619–623 doi: 10.11883/1001-1455(2011)06-0619-05
|
[17] |
李英雷, 叶想平, 张祖根, 等. 一种适用于低体模量材料的被动围压SHPB实验设计 [J]. 爆炸与冲击, 2014, 34(6): 667–672 doi: 10.11883/1001-1455(2014)06-0667-06
LI Yinglei, YE Xiangping, ZHANG Zugen, et al. A design of passive confined SHPB experiment for materials with low bulk modulus [J]. Explosion and Shock Waves, 2014, 34(6): 667–672 doi: 10.11883/1001-1455(2014)06-0667-06
|
[18] |
RAVI-CHANDAR K, MA Z. Inelastic Deformation in Polymers under Multi axial Compression [J]. Mechanics of Time-Dependent Materials, 2000, 4(4): 333–357. doi: 10.1023/A:1026570826226
|
[19] |
LUO H, LU H, COOPER W L, et al. Effect of mass density on the compressive behavior of dry sand under confinement at high strain rates [J]. Experimental Mechanics, 2011, 51(9): 1499–1510. doi: 10.1007/s11340-011-9475-2
|
[20] |
FORQUIN P, GARY G, GATUINGT F. A testing technique for concrete under confinement at high rates of strain [J]. International Journal of Impact Engineering, 2008, 35(6): 425–446. doi: 10.1016/j.ijimpeng.2007.04.007
|
[21] |
JACKSON J J G. Uniaxial Strain Testing of Soils for Blast-Oriented Problems [J]. 1968.
|
[22] |
BRAGOV A M, GRUSHEVSKY G M, LOMUNOV A K. Use of the Kolsky Method for Studying Shear Resistance of Soils [J]. 1994, 1: 253−259.
|
[23] |
LYAKHOV G M, LUCHKO I A, PLAKSII V A, et al. Spherical detonation waves in a solid multi component viscoplastic medium [J]. Soviet Applied Mechanics, 1986, 22(5): 490–495. doi: 10.1007/BF00888551
|
[24] |
VOVK A A, LUCHKO I A, LYAKHOV G M, et al. Cylindrical blast waves in soils [J]. Journal of Applied Mechanics & Technical Physics, 1986, 27(4): 571–576. doi: 10.1007/BF00910203
|
[25] |
HENRYCH J, ABRAHAMSON G R. The dynamics of explosion and its use [M]. New York: Elsevier Scientific Publishing Company, 1979: 73−74.
|
[26] |
KRYMSKII A V, LYAKHOV G M. Waves from an underground explosion [J]. Journal of Applied Mechanics & Technical Physics, 1984, 25(3): 361–367. doi: 10.1007/BF00910394
|
[27] |
王礼立, 胡时胜, 杨黎明, 等.材料动力学[M]. 合肥: 中国科学技术大学出版社, 2017: 95−120.
|
[1] | ZHOU Xuan, XU Lizhi, REN Wenke, GAO Guangfa. Dynamic tensile mechanical properties and constitutive equation of Kevlar29 yarn[J]. Explosion And Shock Waves, 2024, 44(1): 013101. doi: 10.11883/bzycj-2023-0119 |
[2] | GUO Ruiqi, LI Jiangnan, MA Linjian, OU Can, XU Xin. Microstructure and dynamic splitting tensile properties of CF/SSF reinforced coral sand cement mortar[J]. Explosion And Shock Waves, 2024, 44(11): 113101. doi: 10.11883/bzycj-2-23-0466 |
[3] | PAN Yahao, ZONG Zhouhong, QIAN Haimin, HUANG Jie, SHAN Yulin. Experimental study on blast wave propagation in calcareous sand[J]. Explosion And Shock Waves, 2023, 43(5): 053201. doi: 10.11883/bzycj-2022-0117 |
[4] | LIU Feng, LI Qingming. Stain-rate effects on the dynamic compressive strength of concrete-like materials under multiple stress state[J]. Explosion And Shock Waves, 2022, 42(9): 091408. doi: 10.11883/bzycj-2022-0037 |
[5] | YUAN Liangzhu, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. On strain-rate and inertia effects of concrete samples under impact[J]. Explosion And Shock Waves, 2022, 42(1): 013101. doi: 10.11883/bzycj-2021-0114 |
[6] | SHU Qi, DONG Xinlong, YU Xinlu. A dynamic tensile method for M-shaped specimen loaded by Hopkinson pressure bar[J]. Explosion And Shock Waves, 2020, 40(8): 084101. doi: 10.11883/bzycj-2019-0433 |
[7] | DONG Kai, REN Huiqi, RUAN Wenjun, NING Huijun, GUO Ruiqi, HUANG Kui. Study on strain rate effect of coral sand[J]. Explosion And Shock Waves, 2020, 40(9): 093102. doi: 10.11883/bzycj-2019-0432 |
[8] | LI Yixiao, WANG Shengjie. Simulation of hypervelocity impact by the material point method coupled with a new equation of state[J]. Explosion And Shock Waves, 2019, 39(10): 104201. doi: 10.11883/bzycj-2018-0261 |
[9] | HE Yuan, HE Yong, WANG Chuanting, PAN Xuchao, JIAO Junjie, GUO Lei, YANG Xiangli, LI Quan. Theoretical calculation of shock compression properties of MESMs with electronic thermal motion effect[J]. Explosion And Shock Waves, 2018, 38(1): 217-223. doi: 10.11883/bzycj-2017-0034 |
[10] | LYU Yaru, WANG Mingyang, WEI Jiuqi, LIAO Bin. Experimental techniques of SHPB for calcareous sand and its dynamic behaviors[J]. Explosion And Shock Waves, 2018, 38(6): 1262-1270. doi: 10.11883/bzycj-2017-0179 |
[11] | Xi Xulong, Bai Chunyu, Liu Xiaochuan, Mu Rangke, Wang Jizhen. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates[J]. Explosion And Shock Waves, 2017, 37(5): 871-878. doi: 10.11883/1001-1455(2017)05-0871-08 |
[12] | Li Mu, Sun Cheng-wei, Zhao Jian-heng. Progress in high-power laser ramp compression of solids[J]. Explosion And Shock Waves, 2015, 35(2): 145-156. doi: 10.11883/1001-1455(2015)02-0145-12 |
[13] | Shi Fei-fei, Suo Tao, Hou Bing, Li Yu-long. Strain rate and temperature sensitivity and constitutive model of YB-2 of aeronautical acrylic polymer[J]. Explosion And Shock Waves, 2015, 35(6): 769-776. doi: 10.11883/1001-1455(2015)06-0769-08 |
[14] | Luo Xin, Xu Jin-yu, Bai Er-lei, Li Wei-min. Comparative study of the effect of the type of alkali on the strain rate effect of geopolymer concrete[J]. Explosion And Shock Waves, 2014, 34(3): 340-346. doi: 10.11883/1001-1455(2014)03-0340-07 |
[15] | XI Feng, ZHANG Yun. Theeffectsofstrainrateonthedynamicresponseandabnormalbehavior ofsteelbeamsunderpulseloading[J]. Explosion And Shock Waves, 2012, 32(1): 34-42. doi: 10.11883/1001-1455(2012)01-0034-09 |
[16] | YAN Cheng, OU Zhuo-cheng, DUAN Zhuo-ping, HUANG Feng-lei. Strain-rateeffectsondynamicstrengthofbrittlematerials[J]. Explosion And Shock Waves, 2011, 31(4): 423-427. doi: 10.11883/1001-1455(2011)04-0423-05 |
[17] | ZHENG Wen, XU Song-lin, HU Shi-sheng. Dynamicmechanicalpropertiesofdrysandunderconfinedcompression[J]. Explosion And Shock Waves, 2011, 31(6): 619-623. doi: 10.11883/1001-1455(2011)06-0619-05 |
[18] | GUO Wei-guo, LI Yu-long, HUANG Fu-zeng. Deformation and mechanical property of aluminium foam at different strain rates[J]. Explosion And Shock Waves, 2008, 28(4): 289-292. doi: 10.11883/1001-1455(2008)04-0289-04 |
[19] | YANG Jin-wen, SHI Shang-chun, LI Qiao-yan, SUN Yue. Theoretical research on shock compression properties of liquid helium at high temperature and density[J]. Explosion And Shock Waves, 2007, 27(6): 557-561. doi: 10.11883/1001-1455(2007)06-0557-05 |
[20] | TANG Tie-gang, LI Qing-zhong, SUN Xue-lin, SUN Zhan-feng, JIN Shan, GU Yan. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation[J]. Explosion And Shock Waves, 2006, 26(2): 129-133. doi: 10.11883/1001-1455(2006)02-0129-05 |
1. | 黄永辉,阮迅,雷振,毛泽凌,张智宇,周继国. 装药不耦合系数对台阶爆破破碎块体抛掷运动规律影响研究. 工程科学与技术. 2025(02): 223-233 . ![]() | |
2. | 鲜文双,张凯,刘伟,李阳超. 封闭式地下爆炸地表振动数值模拟及试验研究. 防化研究. 2025(02): 46-57 . ![]() | |
3. | 鲜文双,刘伟,张凯,李阳超,舒海龙,翟红波. 基于量纲分析的浅埋炸药爆炸地表振动速度试验研究. 火工品. 2024(06): 84-88 . ![]() | |
4. | 陈春超,陈士海,张智宇,曾凡福,苏松. 台阶爆破模型试验下破碎岩石抛掷速度规律分析. 华侨大学学报(自然科学版). 2023(02): 157-165 . ![]() | |
5. | 朱颂波,徐振洋,张祚富,李政,郇宝乾. 考虑炮孔密集系数及高程影响下质点峰值速度的预测模型研究. 有色金属工程. 2023(09): 139-149 . ![]() | |
6. | 孙宝财,凌晓,周文海,王树江. 埋地输气管道对城市地下空间掘进爆破的力学响应. 爆破. 2022(03): 190-198 . ![]() | |
7. | 赵岩,王小敬,王海龙,王东升. 交叉隧道爆破振速回归分析及对比研究. 工程爆破. 2022(05): 121-127 . ![]() | |
8. | 梁瑞,胡才智,周文海,朱冕. 隧道掘进爆破载荷作用下埋地管道的振动峰值速度预测研究. 中国安全生产科学技术. 2021(05): 123-129 . ![]() | |
9. | 唐海,马谕杰,夏祥,朱帅帅,姜威振. 负高差地形爆破振动规律研究. 工程爆破. 2021(05): 16-25 . ![]() | |
10. | 杨茂森,陈永祥,郝润华. 露天煤矿超高台阶抛掷爆破振动效应评价. 爆破. 2021(04): 156-162 . ![]() | |
11. | 李新平,边兴,罗忆,吕均琳,任高峰. 地下洞室边墙爆破振动传播衰减规律研究. 岩土力学. 2020(06): 2063-2069 . ![]() | |
12. | 何理,钟东望,李鹏,宋琨,司剑峰. 下穿隧道爆破荷载激励下边坡振动预测及能量分析. 爆炸与冲击. 2020(07): 108-117 . ![]() | |
13. | 费鸿禄,孙晓宇,关福晨,刘雨. 水下深埋岩石爆破振动衰减规律研究. 爆破. 2020(03): 26-33+55 . ![]() | |
14. | Chen Li,Shufeng Liang,Yongchao Wang,Long Li,Dianshu Liu. Attenuation Parameters of Blasting Vibration by Fuzzy Nonlinear Regression Analysis. Journal of Beijing Institute of Technology. 2020(04): 520-525 . ![]() | |
15. | 叶海旺,袁尔君,雷涛,龙梅. 基于量纲分析的爆破振动质点峰值速度预测公式. 金属矿山. 2019(05): 56-61 . ![]() | |
16. | 万嗣鹏,张义平,陶铁军,池恩安,罗毅. 基于准岩体抗拉强度的爆破振动速度衰减公式改进. 金属矿山. 2019(07): 60-64 . ![]() |