Citation: | ZHOU Jie, ZHI Xiaoqi, XU Jinbo, YUE Zhonghao. Research on penetration of small size fragment to single soldier protection equipment[J]. Explosion And Shock Waves, 2019, 39(2): 023304. doi: 10.11883/bzycj-2018-0023 |
[1] |
邹渝.机械化步兵单兵防护装备发展研究[J].中国个体防护装备, 2015, 3(4):18-22. http://d.old.wanfangdata.com.cn/Periodical/zggtfhzb201503004
ZOU Yu. Research on development of protection equipment for mechanic infantry soldier[J]. China Personal Protective Equipment, 2015, 3(4):18-22. http://d.old.wanfangdata.com.cn/Periodical/zggtfhzb201503004
|
[2] |
邹渝, 李曙光, 肖南.单兵防弹衣对穿甲破片的防护效应研究[J].医疗卫生装备, 2015, 36(11):36-38. http://d.old.wanfangdata.com.cn/Periodical/ylwszb201511010
ZOU Yu, LI Shuguang, XIAO Nan. Study on protective effect of individual bulletproof cloth against armor-piercing fragments[J]. Chinese Medical Equipment Journal, 2015, 36(38):36-38. http://d.old.wanfangdata.com.cn/Periodical/ylwszb201511010
|
[3] |
王晓强, 朱锡, 梅志远, 等.超高分子量聚乙烯纤维增强层合厚板抗弹性能实验研究[J].爆炸与冲击, 2009, 29(1):29-34. doi: 10.3321/j.issn:1001-1455.2009.01.006
WANG Xiaoqiang, ZHU Xi, MEI Zhiyuan, et al. Ballistic performances of ultra-high molecular weight polyethylene fiber-reinforced thick laminated plates[J]. Explosion and Shock Waves, 2009, 29(1):29-34. doi: 10.3321/j.issn:1001-1455.2009.01.006
|
[4] |
李常胜, 黄献聪, 李焱, 等.软体防弹衣穿透概率的分析[J].兵工学报, 2013, 34(1):20-24. doi: 10.11809/scbgxb2013.04.007
LI Changsheng, HUANG Xiancong, LI Yan, et al. Study on the probability of perforation for soft body armor[J]. Acta Armamentarii, 2013, 34(4):20-24. doi: 10.11809/scbgxb2013.04.007
|
[5] |
FREITAS C J, MATHIS J T, SCOTT N, et al. Dynamic response due to behind helmet blunt trauma measured with a human head surrogate[J]. International Journal of Medical Sciences, 2014, 11(5):409-25. doi: 10.7150/ijms.8079
|
[6] |
蔡志华, 包正, 王威, 等.枪弹冲击防弹头盔致头部非贯穿性损伤的数值模拟研究[J].兵工学报, 2017, 38(6):1097-1105. doi: 10.3969/j.issn.1000-1093.2017.06.008
CAI Zhihuan, BAO Zheng, WANG Wei, et al. Simulation of non-penetrating damage of head due to bullet impact to helmet[J]. Acta Armamentarii, 2017, 38(6):1097-1105. doi: 10.3969/j.issn.1000-1093.2017.06.008
|
[7] |
孙幸福.防弹头盔研制技术及发展前景[J].中国个体防护装备, 2009(1):14-38. doi: 10.3969/j.issn.1671-0312.2009.01.005
SUN Xingfu. Developing technology and prospect of ballistic helmet[J]. China Personal Protective Equipment, 2009(1):14-38. doi: 10.3969/j.issn.1671-0312.2009.01.005
|
[8] |
张国伟.终点效应及其应用技术[M].北京:国防工业出版社, 2006:2-3
|
[9] |
王林, 李晓辉, 刘永付, 等.基于比动能标准的战斗部杀伤威力评价方法研究[J].测控技术, 2012, 31(增刊):88-90. http://d.old.wanfangdata.com.cn/Conference/7727442
WANG Lin, LI Xiaohui, LIU Yongfu, et al. Study of anti-personal warhead killing power based on the specific kinetic energy lethality criteria[J]. Measurement and Control Technology, 2012, 31(suppl):88-90. http://d.old.wanfangdata.com.cn/Conference/7727442
|
[10] |
杨玉林, 赵国志, 王戈冰.装甲目标毁伤评估的等效靶方法[J].火力与指挥控制, 2003, 28(6):81-84. doi: 10.3969/j.issn.1002-0640.2003.06.024
YANG Yulin, ZHAO Guozhi, WANG Gebing. Surrogates for armor targets vulnerability assessment[J]. Fire Control and Command Control, 2003, 28(6):81-84. doi: 10.3969/j.issn.1002-0640.2003.06.024
|
[11] |
张庆明, 黄风雷, 周兰庭.破片贯穿目标等效靶的极限速度[J].兵工学报, 1996, 17(1):21-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600175191
ZHANG Qingming, HUANG Fenglei, ZHOU Lanting. Limit velocity for the penetrarion of fragments into their targets[J]. Acta Armamentarii, 1996, 17(1):21-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600175191
|
[12] |
米双山, 何剑斌, 张锡恩, 等.战斗损伤仿真中的等效靶与破片终点速度研究[J].兵工学报, 2005, 26(5):605-608. doi: 10.3321/j.issn:1000-1093.2005.05.007
MI Shuangshan, HE Jianbin, ZHANG Xien, et al. Equivalent target and terminal velocity of fragments in battle damage simulation[J]. Acta Armamentarii. 2005, 26(5):605-608. doi: 10.3321/j.issn:1000-1093.2005.05.007
|
[13] |
刘鹏飞.破片特性对冲击起爆B炸药比动能阈值的影响[D].太原: 中北大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10110-1017201882.htm
|
[14] |
马红磊, 胡更开, 李树奎.97钨合金力学性能研究[J].兵器材料科学与工程, 2003, 26(6):39-41. doi: 10.3969/j.issn.1004-244X.2003.06.010
MA Honglei, HU Gengkai, LI Shukui. Mechanical properties of 97% tungstenalloy[J]. Ordnance Material Science and Engineerin, 2003, 26(6):39-41. doi: 10.3969/j.issn.1004-244X.2003.06.010
|
[1] | QIAN Bingwen, ZHOU Gang, LI Mingrui, YIN Lixin, GAO Pengfei, CHEN Chunlin, MA Kun. Rigid-body critical transformation velocity of a high-strength steel projectile penetrating concrete targets at high velocities[J]. Explosion And Shock Waves, 2024, 44(10): 103301. doi: 10.11883/bzycj-2022-0309 |
[2] | WANG Zhi, CHANG Lijun, HUANG Xingyuan, CAI Zhihua. Simulation on the defending effect of composite structure of body armor under the combined action of blast wave and fragments[J]. Explosion And Shock Waves, 2023, 43(6): 063202. doi: 10.11883/bzycj-2022-0515 |
[3] | ZHANG Pinliang, CAO Yan, CHEN Chuan, SONG Guangming, WU Qiang, LI Yu, GONG Zizheng, LI Ming. Ballistic limit of an impedance-graded-material enhanced Whipple shield[J]. Explosion And Shock Waves, 2022, 42(2): 023301. doi: 10.11883/bzycj-2021-0230 |
[4] | KANG Yue, ZHANG Shizhong, ZHANG Yuanping, LIU Zhanli, HUANG Xiancong, MA Tian. Research on anti-shockwave performance of the protective equipment for the head of a soldier based on shock tube evaluation[J]. Explosion And Shock Waves, 2021, 41(8): 085901. doi: 10.11883/bzycj-2020-0395 |
[5] | TANG Changzhou, ZHI Xiaoqi, GAO Feng, YU Yongli. Investigation on tungsten spheres penetrating into pine target covered with body armor[J]. Explosion And Shock Waves, 2021, 41(6): 063302. doi: 10.11883/bzycj-2020-0309 |
[6] | LI Ping, MA Tiechang, XU Xiangzhao, MA Tianbao. A GPU parallel staircase finite difference mesh generation algorithm based on the ray casting method[J]. Explosion And Shock Waves, 2020, 40(2): 024201. doi: 10.11883/bzycj-2019-0344 |
[7] | PENG Yong, LU Fangyun, FANG Qin, WU Hao, LI Xiangyu. Analyses of the size effect for projectile penetrations into concrete targets[J]. Explosion And Shock Waves, 2019, 39(11): 113301. doi: 10.11883/bzycj-2018-0402 |
[8] | GENG Shaobo, LI Hong, GE Peijie. Equivalent static load dynamical coefficient for exponential air blast loading with transition[J]. Explosion And Shock Waves, 2019, 39(3): 032201. doi: 10.11883/bzycj-2018-0048 |
[9] | SONG Chunming, LI Gan, WANG Mingyang, QIU Yanyu, CHENG Yihao. Theoretical analysis of projectiles penetrating into rock targets at different velocities[J]. Explosion And Shock Waves, 2018, 38(2): 250-257. doi: 10.11883/bzycj-2017-0198 |
[10] | ZHAO Lijun, JIAO Zhigang, LI Xiaojie, HUANG Xiaojie, ZHAO Dongzhi, ZHU Xiaoping, TANG Hui, WANG Changfu, TIAN Zhen, YU Xinning. Critical penetration velocity of prefabricated fragment in penetrating homogeneous armor steel plate[J]. Explosion And Shock Waves, 2018, 38(1): 183-190. doi: 10.11883/bzycj-2016-0116 |
[11] | Li Xuezheng, Wang Minchao. Particle velocity models on small yields underground explosions[J]. Explosion And Shock Waves, 2017, 37(5): 899-905. doi: 10.11883/1001-1455(2017)05-0899-07 |
[12] | Fan Zijian, Ran Xianwen, Tang Wenhui, Yu Guodong, Chen Weike, Ren Caiqing. Calculation method and influencing factors of the fragmental radial velocities of PELE after penetrating thin target[J]. Explosion And Shock Waves, 2017, 37(4): 621-628. doi: 10.11883/1001-1455(2017)04-0621-08 |
[13] | Liu Bing, Chen Xiaowei. Perforation modes of double-layered plates with air space struckby a blunt rigid projectile[J]. Explosion And Shock Waves, 2016, 36(1): 24-30. doi: 10.11883/1001-1455(2016)01-0024-07 |
[14] | Chi Run-qiang, Ahmad Serjouei, Fan Feng, Idapalapati Sridhar. Geometrical effects on performances of ceramic/metal armors impacted by projectiles[J]. Explosion And Shock Waves, 2014, 34(5): 594-600. doi: 10.11883/1001-1455(2014)05-0594-07 |
[15] | Kong Xiang-shao, Wu Wei-guo, Li Jun, Li Xiao-bin, Xu Shuang-xi. Effects of explosion fragments penetrating defensive liquid-filled cabins[J]. Explosion And Shock Waves, 2013, 33(5): 471-478. doi: 10.11883/1001-1455(2013)05-0471-08 |
[16] | CHEN Ming, LU Wen-bo, ZHOU Chuang-bing, SHU Da-qiang, XU Hong-tao. Rockslopestabilityunderblastingvibrationbasedon equivalentacceleration[J]. Explosion And Shock Waves, 2011, 31(5): 475-480. doi: 10.11883/1001-1455(2011)05-0475-06 |
[17] | WANG Gui-ji, DENG Xiang-yang, TAN Fu-li, LIU Jun, ZHANG Ning, GU Yan, PENG Qi-xian, WU Gang, HAN Mei. Velocity measurement of the small size flyer of an exploding foil initiator[J]. Explosion And Shock Waves, 2008, 28(1): 28-31. doi: 10.11883/1001-1455(2008)01-0028-05 |
[18] | CHEN Xiao-wei, Zhang Fang-ju, XU Ai-min, QU ming. Buckling analysis of earth penetrating warhead and equivalent conditions of targets[J]. Explosion And Shock Waves, 2007, 27(4): 296-305. doi: 10.11883/1001-1455(2007)04-0296-10 |
[19] | ZHOU Bu-kui, TANG De-gao, ZHOU Zao-sheng, WANG An-bao. Study of influence of hit velocity on the anti-penetration behavior of nubbly corundum concrete[J]. Explosion And Shock Waves, 2005, 25(1): 59-63. doi: 10.11883/1001-1455(2005)01-0059-05 |
1. | 肖有才,王海,范晨阳,邹宇,韩勇. 弹体侵彻平面薄靶板等效模型建立与仿真模拟. 振动与冲击. 2024(24): 243-250 . ![]() | |
2. | 张佳玉,赵太勇,付建平,印立魁,王维占,孟凡高. 钨柱破片对装甲钢的侵彻研究. 振动与冲击. 2023(03): 297-303 . ![]() | |
3. | 李峰梅,熊国松,王保,汪衡,李俊龙. 不同海拔高度下破片速度衰减模型的修正方法. 含能材料. 2022(01): 58-63 . ![]() | |
4. | 李烨,马铭辉,蒋招绣,王晓东,任文科,高光发. 12.7mm穿燃弹对Q235半无限厚靶板的侵彻行为. 弹道学报. 2022(01): 51-57 . ![]() | |
5. | 王守仁,任晓鹏,杨丽,张银,李杰,付建平,陈智刚. 破甲随进杀伤战斗部威力性能研究. 兵器装备工程学报. 2022(07): 185-190 . ![]() | |
6. | 刘子德,王光华,董方栋,崔斌. 某9 mm手枪弹侵彻MDF的弹道特性. 爆炸与冲击. 2021(05): 86-92 . ![]() | |
7. | 李金福,智小琦,范兴华. 钨球及六棱钨柱破片侵彻Q235叠层靶特性研究. 火炮发射与控制学报. 2021(02): 28-33+39 . ![]() | |
8. | 严平,赵垭丽,李昕,魏平. 基于耗能模型的超空泡射弹水下侵彻鱼雷等效关系研究. 爆炸与冲击. 2021(09): 63-77 . ![]() | |
9. | 李金福,智小琦,郝春杰,范兴华. Q235钢靶分层结构抗异形破片侵彻性能研究. 弹箭与制导学报. 2020(04): 55-60 . ![]() | |
10. | 王雪,智小琦,徐锦波,范兴华. 球形破片侵彻多层板弹道极限的量纲分析. 高压物理学报. 2019(06): 157-165 . ![]() | |
11. | 闫文敏,王光华,金永喜,王舒,许啸,田野. 枪弹穿甲后效破片对典型防弹衣侵彻毁伤特性试验研究. 兵工学报. 2019(11): 2378-2384 . ![]() |