Processing math: 100%
YANG Deqing, WU Binghong, ZHANG Xiangwen. Anti-explosion and shock resistance performance of sandwich defensive structure with star-shaped auxetic material core[J]. Explosion And Shock Waves, 2019, 39(6): 065102. doi: 10.11883/bzycj-2018-0060
Citation: YANG Deqing, WU Binghong, ZHANG Xiangwen. Anti-explosion and shock resistance performance of sandwich defensive structure with star-shaped auxetic material core[J]. Explosion And Shock Waves, 2019, 39(6): 065102. doi: 10.11883/bzycj-2018-0060

Anti-explosion and shock resistance performance of sandwich defensive structure with star-shaped auxetic material core

doi: 10.11883/bzycj-2018-0060
  • Received Date: 2018-02-24
  • Rev Recd Date: 2018-04-22
  • Publish Date: 2019-06-01
  • A sandwich defensive structure made up of the star-shaped auxetic cellular material is designed in this paper. FE models are developed to simulate the process of projectile penetration and underwater explosion. Different structure parameters, such as cell thickness and Poisson’s ratio of the star-shaped material, are applied to investigate the affections of the auxetic insert layer in projectile penetration and explosion. According to the numerical simulation results, the star-shaped auxetic sandwich structure does not strong enough to defense missile attacks as it bringing higher residual velocity compared with the traditional monolithic shield. Meanwhile, this auxetic structure tends to show better anti-explosive performance than the traditional shield of equal mass. Structure parameters of the star-shaped material influence the anti-explosion ability of sandwich structure in different complicated ways. As far as simulated cases, the sandwich structure can achieve the best anti-explosion performance by setting the value 1.63 for Poisson’s ratio of auxetic cellular and decreasing the layers of the cellular material.
  • [1]
    BALANDIN D, BOLOTNIK N, PILKEY W. Optimal protection from impact, shock and vibration [M]. Amsterdam: Gordon and Breach Science Publishers, 1998.
    [2]
    朱锡, 张振华, 刘润泉, 等. 水面舰艇舷侧防雷舱结构模型抗爆试验研究 [J]. 爆炸与冲击, 2004, 24(2): 133–139. DOI: 10.11883/1001-1455(2004)02-0133-07.

    ZHU Xi, ZHANG Zhenhua, LIU Runquan, et al. Experimental study on the explosion resistance of cabin near shipboard of surface war ship subjected to underwater contact explosion [J]. Explosion and Shock Waves, 2004, 24(2): 133–139. DOI: 10.11883/1001-1455(2004)02-0133-07.
    [3]
    WIERNICKI C, LIEM F, WOODS G, et al. Structural analysis methods for lightweight metallic corrugated core sandwich panels subjected to blast loads [J]. Naval Engineers Journal, 1991, 103(3): 192–203. doi: 10.1111/nej.1991.103.issue-3
    [4]
    MCSHANE G, DESHPANDE V, FLECK N. The underwater blast resistance of metallic sandwich beams with prismatic lattice cores [J]. Journal of Applied Mechanics, 2007, 72(2): 352–364.
    [5]
    ABRATE S. Impulsive response of sandwich structures [J]. Procedia Engineering, 2014, 88: 62–68. doi: 10.1016/j.proeng.2014.11.127
    [6]
    VASILACHE C A, BOAZU D. Sandwich plates loaded at explosion impact [J]. Materiale Plastice, 2013, 50(2): 122–125.
    [7]
    黄超, 姚熊亮, 张阿漫. 钢夹层板近场水下爆炸抗爆分析及其在舰船抗爆防护中的应用 [J]. 振动与冲击, 2010, 29(9): 73–76. doi: 10.3969/j.issn.1000-3835.2010.09.017

    HUANG Chao, YAO Xiongliang, ZHANG Aman. Analysis of blast-resistance of steel sandwich plate under proximity underwater explosion loading and its application in ship protection [J]. Journal of Vibration and Shock, 2010, 29(9): 73–76. doi: 10.3969/j.issn.1000-3835.2010.09.017
    [8]
    卢天健, 辛锋先. 轻质板壳结构设计的振动和声学基础 [M]. 北京: 科学出版社, 2012.
    [9]
    邹广平, 孙杭其, 唱忠良, 等. 聚氨酯/钢夹芯结构爆炸载荷下动力学响应的数值模拟 [J]. 爆炸与冲击, 2015, 35(6): 907–912. DOI: 10.11883/1001-1455(2015)06-0907-06.

    ZOU Guangping, SUN Hangqi, CHANG Zhongliang, et al. Numerical simulation on dynamic response of polyurethane/steel sandwich structure under blast loading [J]. Explosion and Shock Waves, 2015, 35(6): 907–912. DOI: 10.11883/1001-1455(2015)06-0907-06.
    [10]
    方岱宁, 张一慧等. 轻质点阵材料力学与多功能设计 [M]. 北京: 科学出版社, 2009.
    [11]
    QU T, AVACHAT S, ZHOU M. Response of cylindrical composite structures subjected to underwater impulsive loading: experimentations and computations [J]. Journal of Engineering Materials and Technology, Transactions of the ASME, 2017, 139(2): Article ID 021020.
    [12]
    杨德庆, 马涛, 张梗林. 舰艇新型宏观负泊松比效应蜂窝舷侧防护结构 [J]. 爆炸与冲击, 2015, 35(2): 243–248. DOI: 10.11883/1001-1455(2015)02-0243-06.

    YANG Deqing, MA Tao, ZHANG Genglin. A noval auxetic broadside defensive structure foe naval ships [J]. Explosion and Shock Waves, 2015, 35(2): 243–248. DOI: 10.11883/1001-1455(2015)02-0243-06.
    [13]
    ZHANG X W, YANG D Q. Numerical and experimental studies of a light-weight auxetic cellular vibration isolation base [J]. Shock and Vibration, 2016(9): 1–16.
    [14]
    杨德庆, 张相闻, 吴秉鸿. 负泊松比效应防护结构抗爆抗冲击性能影响因素 [J]. 上海交通大学学报, 2018, 52(4): 5–13.

    YANG Deqing, ZHANG Xiangwen, WU Binghong. Study on the influence factors of explosion and shock resistance performance of auxetic sandwich defensive structure for naval ships [J]. Journal of Shanghai Jiao Tong University, 2018, 52(4): 5–13.
    [15]
    GRIMA J N, GATT R, ELLUL B, et al. Auxetic behaviour in non-crystalline materials having star or triangular shaped perforations [J]. Journal of Non-Crystalline Solids, 2010, 356(37−40): 1980–1987. doi: 10.1016/j.jnoncrysol.2010.05.074
    [16]
    吴秉鸿, 张相闻, 杨德庆. 星型负泊松比多孔材料力学性能及应用研究 [J]. 固体力学学报, 2018, 39(2): 139–151. doi: 10.19636/j.cnki.cjsm42-1250/o3.2017.015

    WU Binghong, ZHANG Xiangwen, YANG Deqing. Mechanical properties and application of the star-shaped cellular auxetic material [J]. Chinese Journal of Solid Mechanics, 2018, 39(2): 139–151. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2017.015.
    [17]
    TENG X, DEY S, BORVIK T, et al. Protection performance of double-layered metal shields against projectile impact [J]. Journal of Mechanics of Materials and Structures, 2007, 2(7): 1309–1330. doi: 10.2140/jomms
    [18]
    DURMUS A, GUDEN M, GULCIMEN B, et al. Experimental investigations on the ballistic impact performances of cold rolled sheet metals [J]. Materials and Design, 2011, 32(3): 1356–1366. doi: 10.1016/j.matdes.2010.09.016
  • Cited by

    Periodical cited type(20)

    1. 贺锋,梁一鸣,秦海,李季,高超,刘三丰. 负泊松比结构的工程应用现状及展望. 防护工程. 2024(01): 68-78 .
    2. 蒋舟顺,徐峰祥,邹震,周谦谋. 爆炸载荷下正弦曲边三维负泊松比夹芯板的动态响应和吸能特性. 爆炸与冲击. 2024(02): 3-20 . 本站查看
    3. 陈洋,王肇喜,翟师慧,盛鹏,王者蓝,朱明亮. 3D打印点阵夹芯结构冲击损伤的近场动力学模拟. 爆炸与冲击. 2024(03): 146-160 . 本站查看
    4. 孔维凡,付涛. 负泊松比内凹六边形蜂窝夹层板的吸声性能. 复合材料学报. 2024(04): 2157-2166 .
    5. 黄绮雯,张慧华,韩尚宇,纪晓磊. 弧形负泊松比蜂窝结构抗冲击性能的有限元分析. 南昌航空大学学报(自然科学版). 2024(02): 76-88 .
    6. 贺锋,梁一鸣,李季,高超,慕孟,白家琦,祁少博. 异型陶瓷负泊松比复合结构的防弹防爆性能数值模拟研究. 安全与环境学报. 2024(08): 2919-2928 .
    7. 韩广,郄彦辉,班宝旺. 新型斜十字负泊松比结构弹性力学性能研究. 机械强度. 2023(01): 183-189 .
    8. 朱春晓,徐双喜,陈威,李晓彬,乐京霞. 负泊松比曲边内凹同心蜂窝结构冲击吸能特性研究. 武汉理工大学学报(交通科学与工程版). 2023(01): 90-95 .
    9. 刘洋佐,马大为,任杰,仲健林,赵昌方. 双箭头负泊松比结构抗侵彻性能. 国防科技大学学报. 2023(02): 197-207 .
    10. 张栗铭,杨德庆. 力学与声学超材料在船舶工程中的应用研究综述. 中国舰船研究. 2023(02): 1-19+47 .
    11. 崔天宁,秦庆华. 轻质多孔夹芯结构的弹道侵彻行为研究进展. 力学进展. 2023(02): 395-432 .
    12. 谢红胜,罗刚,袁坤. 一种偏转结构抗侵彻性能试验及数值仿真. 武汉理工大学学报(交通科学与工程版). 2023(04): 644-647+653 .
    13. 侯海量,王克,柴崧淋,李典,赵著杰. 水下接触爆炸下夹芯式防雷舱抗爆效能研究. 船舶力学. 2023(10): 1550-1561 .
    14. 崔飞蝶,董焱章,李青峰. 多型负泊松比材料-结构协同设计. 湖北汽车工业学院学报. 2023(04): 64-69+75 .
    15. 赵雨薇,张宏伟,孙晓旺,王显会. 爆炸载荷下负泊松比下肢保护装置参数分析. 兵器装备工程学报. 2022(03): 60-66+106 .
    16. 孙魁远,孙晓旺,张宏伟,王显会,彭兵,张绍彦. 厚度梯度型负泊松比蜂窝抗爆炸特性及优化. 兵器装备工程学报. 2022(04): 190-197 .
    17. 赵颖,王凯锋,施劲余,桑叶,李云伍,陈宇,殷举伞. 微元胞缺失下三星型微结构面内动态性能分析. 振动与冲击. 2022(10): 115-123+185 .
    18. 周辉,任辉启,吴祥云,易治,黄魁,穆朝民,王海露. 成层式防护结构中分散层研究综述. 爆炸与冲击. 2022(11): 3-28 . 本站查看
    19. 孙晓旺,陶晓晓,王显会,李进军,王利辉. 负泊松比蜂窝材料抗爆炸特性及优化设计研究. 爆炸与冲击. 2020(09): 66-76 . 本站查看
    20. 邓裕坤,梁学称,裴小鹏,翟侃侃,王超,张百超,白云刚,张文德,谭颖,王丕新,徐昆. 柔性主链的支化结构对冲击硬化材料性能的影响. 应用化学. 2019(10): 1155-1164 .

    Other cited types(22)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(4)

    Article Metrics

    Article views (7220) PDF downloads(147) Cited by(42)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return