Citation: | ZHANG Yunfeng, LUO Xingbai, SHI Dongmei, ZHANG Yuling, LIU Guoqing, ZHEN Jianwei. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression[J]. Explosion And Shock Waves, 2019, 39(6): 063101. doi: 10.11883/bzycj-2018-0114 |
[1] |
TOGO H, ZHANG Y, KAWAMURA Y, et al. Properties of Zr-based bulk metallic glass under shock compression [J]. Materials Science and Engineering A, 2007, 449–451: 264–268. DOI: 10.1016/j.msea.2006.02.431.
|
[2] |
MATTERN N, KUHN U, HERMANN H, et al. Thermal behavior and glass transition of Zr-based bulk metallic glasses [J]. Materials Science and Engineering A, 2004, 375−377: 351–354. DOI: 10.1016/j.msea.2003.10.125.
|
[3] |
QIAO J W, ZHANG Y, LI J H, et al. Strain rate response of a Zr-based composite fabricated by Bridgman solidification [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(2): 214–219. DOI: 10.1007/s12613-010-0216-9.
|
[4] |
ZHANG Q S, ZHANG W, XIE G Q, et al. Synthesis, structure and mechanical properties of Zr-Cu-based bulk metallic glass composites [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(2): 208–213. DOI: 10.1007/s12613-010-0215-x.
|
[5] |
LIU C, HEATHERLY L, HORTON J, et al. Test environments and mechanical properties of Zr-base bulk amorphous alloys [J]. Metallurgy Materials Transaction A, 1998, 29: 1811–1820. DOI: 10.1007/s11661-998-0004-6.
|
[6] |
DAI L H, BAI Y L. Basic mechanical behaviors and mechanics of shear banding in BMGs [J]. International Journal of Impact Engineering, 2008, 35: 704–716. DOI: 10.1016/j.ijimpeng.2007.10.007.
|
[7] |
BATTEZZATI L, BALDISSIN D. Quantitative evaluation of length scales for temperature rise in shear bands and for failure of metallic glasses [J]. Scripta Materialia, 2008, 59: 223–226. DOI: 10.1016/j.scriptamat.2008.03.016.
|
[8] |
潘念侨. Zr基非晶合金材料本构关系及其释能效应研究[D]. 南京: 南京理工大学, 2016: 53−71.
|
[9] |
DAI L H, YAN M, LIU L F, et al. Adiabatic shear banding instability in bulk metallic glasses [J]. Applied Physics Letters, 2005, 87: 141916 -1–14916-32005. DOI: 10.1063/1.2067691.
|
[10] |
JIANG M Q, LING Z, MENG J X, et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage [J]. Philosophical Magazine, 2008, 88(3): 407–426. DOI: 10.1080/14786430701864753.
|
[11] |
JIANG W H, LIAO H H, LIU F X, et al. Rate-dependent temperature increases in shear bands of a bulk-metallic glass [J]. Metallurgical and Materials Transactions A, 2008, 39(8): 1822–1830. DOI: 10.1007/s11661-007-9321-4.
|
[12] |
WANG J G, PAN Y, SONG S X, et al. How hot is a shear band in a metallic glass? [J]. Materials Science and Engineering A, 2016, 651: 321–331. DOI: 10.1016/j.msea.2015.10.125.
|
[13] |
WRIGHT W J, BYER R R, GU X J. High-speed imaging of a bulk metallic glass during uniaxial compression [J]. Applied Physics Letters, 2013, 102: 241920. DOI: 10.1063/1.4811744.
|
[14] |
李刚. Zr基非晶合金激光熔覆与诱导自蔓延合成[D]. 大连: 大连理工大学, 2003: 11−15.
|
[15] |
JIANG M Q, WEI Y P, WILDE G, et al. Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation [J]. Applied Physics Letters, 2015, 106: 021904–1. DOI: 10.1063/1.4905928.
|
[16] |
WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass [J]. Intermatellics, 2018, 93: 383–388. DOI: 10.1016/j.intermet.2017.11.004.
|
[17] |
FAN Z J, ZHENG Z Y, JIAO Z B. Compressive fracture characteristics of Zr-based bulk metallic glass [J]. Science China Physics, Mechanics and Astronomy, 2016, 53(5): 823–827. DOI: 10.1007/s11433-010-0154-6.
|
[18] |
NOWAK S, OCHIN P, PASKO A, et al. Mechanical behavior of Zr-based bulk metallic glasses [J]. Strength of Materials, 2008, 40(1): 154–157. DOI: 10.1007/s11223-008-0040-x.
|
[19] |
JOHNSON G R, HOLMQUIST T J. Response of boron carbide subjected to large strains, high strain rates, and high pressures [J]. Journal of Applied Physics, 1999, 85(12): 8060–8073. DOI: 10.1063/1.370643.
|
[20] |
WANG W H, LI F Y, PAN M X, et al. Elastic property and its response to pressure in a typical bulk metallic glass [J]. Acta Materialia, 2004, 52: 715–719. DOI: 10.1016/j.actamat.2003.10.008.
|
[21] |
WANG W H, WEN P, WANG L M, et al. Equation of state of bulk metallic glasses studied by an ultrasonic method [J]. Applied Physics Letters, 2004, 24: 3947–3949. DOI: 10.1063/1.1426272.
|
[22] |
石永相. 多元非晶合金含能材料药型罩应用研究[D]. 石家庄: 陆军工程大学, 2017: 35−46.
|
[23] |
HOLMQUIST T J, TEMPLETON D W, BISHNOI K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications [J]. International Journal of Impact Engineering, 2001, 25: 211–231. DOI: 10.1016/S0734-743X(00)00046-4.
|
[1] | ZHU Chao, ZHANG Xiaowei, ZHANG Qingming, ZHANG Tao. Structural response and failure of projectiles obliquely penetrating into double-layered steel plate targets[J]. Explosion And Shock Waves, 2023, 43(9): 091408. doi: 10.11883/bzycj-2023-0017 |
[2] | ZHANG Yunfeng, FANG Long, WEI Xin, XU Chang, SUI Yaguang, SHI Dongmei. Research on mechanism of shock fragmentation reaction of Zr-based bulk metallic glass fragment[J]. Explosion And Shock Waves, 2023, 43(1): 013103. doi: 10.11883/bzycj-2022-0187 |
[3] | WANG Jiangbo, DING Junsheng, WANG Xiaodong, DU Zhonghua, GAO Guangfa. Effect of coarse aggregate size on the dynamic compression behavior of concrete[J]. Explosion And Shock Waves, 2022, 42(2): 023101. doi: 10.11883/bzycj-2021-0147 |
[4] | ZHU Yuan, ZHANG Jianxun, QIN Qinghua. Dynamic compressive response of metal orthogonal corrugated sandwich structure[J]. Explosion And Shock Waves, 2020, 40(1): 013101. doi: 10.11883/bzycj-2019-0038 |
[5] | ZHANG Na, ZHOU Jian, XU Mingfeng, LI Hui, MA Guowei. Dynamic mechanical properties of basalt fiber engineered cementitious composites[J]. Explosion And Shock Waves, 2020, 40(5): 053101. doi: 10.11883/bzycj-2019-0351 |
[6] | ZHANG Yunfeng, LUO Xingbai, LIU Guoqing, SHI Dongmei. Construction and application of the JH-2 model for a Zr-based bulk metallic glass alloy[J]. Explosion And Shock Waves, 2020, 40(7): 073101. doi: 10.11883/bzycj-2019-0377 |
[7] | DU Bojun, LIU Zeqing, WANG Yalin, XU Yong, LI Qianwu. A test method of motion parameters of static explosion based on high-speed photography[J]. Explosion And Shock Waves, 2019, 39(9): 094101. doi: 10.11883/bzycj-2018-0175 |
[8] | Yi Xiangyu, ZHU Yujian, YANG Jiming. Mechanism of early-stage drop deformation in shock induced flow at limited Weber numbers[J]. Explosion And Shock Waves, 2018, 38(3): 525-533. doi: 10.11883/bzycj-2016-0269 |
[9] | FENG Song, RAO Guoning, PENG Jinhua, WANG Bin. Experimental study of bubble pulsation by underwater explosion of CL-20-based explosives[J]. Explosion And Shock Waves, 2018, 38(4): 855-862. doi: 10.11883/bzycj-2017-0093 |
[10] | Yi Xiangyu, Zhu Yujian, Yang Jiming. Early-stage deformation of liquid drop in shock induced high-speed flow[J]. Explosion And Shock Waves, 2017, 37(5): 853-862. doi: 10.11883/1001-1455(2017)05-0853-10 |
[11] | Fu Hua, Li Kewu, Li Tao, Liu Cangli, Peng Jinhua. Simulation of dynamic compression of plastic-bonded explosives considering heterogeneous structure[J]. Explosion And Shock Waves, 2016, 36(1): 17-23. doi: 10.11883/1001-1455(2016)01-0017-07 |
[12] | Hou Hai-zhou, Hu Yi-ting, Peng Jin-hua, Jin Jian-wei. Dynamic behavior and constitutive model of phenolic cotton fabric material under impact loading[J]. Explosion And Shock Waves, 2015, 35(6): 858-863. doi: 10.11883/1001-1455(2015)06-0858-06 |
[13] | Tan Zi-han, Xu Song-lin, Zhang Chao, Hu Shi-sheng. Dynamic compressive properties of two tungsten structure reinforced Zr-based metallic glass composites at different temperatures[J]. Explosion And Shock Waves, 2013, 33(3): 225-230. doi: 10.11883/1001-1455(2013)03-0225-06 |
[14] | ZHANG Hong-liang, HUANG Feng-lei. StudyontheDn()relationfortheRDX/TNTandHMX/TNTratesticks[J]. Explosion And Shock Waves, 2012, 32(5): 495-500. doi: 10.11883/1001-1455(2012)05-0495-06 |
[15] | REN Xing-tao, ZHOU Ting-qing, ZHONG Fang-ping, HU Yong-le, WANG Wan-peng. Dynamicmechanicalbehaviorofsteel-fiberreactivepowderconcrete[J]. Explosion And Shock Waves, 2011, 31(5): 540-547. doi: 10.11883/1001-1455(2011)05-0540-08 |
[16] | XIE Ruo-ze, HU Wen-jun, CHEN Cheng-jun, PAN Xiao-xia, HE Peng, ZHANG Fang-ju, CHEN Jie. DynamiccompressivemechanicalpropertiesofV-5Cr-5Ti atroomtemperature[J]. Explosion And Shock Waves, 2010, 30(6): 641-646. doi: 10.11883/1001-1455(2010)06-0641-06 |
[17] | YUAN Qin-lu, LI Yu-long, LI He-jun. Experimental investigation on dynamic compressive behaviors of carbon cloth/carbon composites[J]. Explosion And Shock Waves, 2007, 27(6): 541-545. doi: 10.11883/1001-1455(2007)06-0541-05 |
[18] | CHENG He-fa, HUANG Xiao-mei, WANG Qiang, TIAN Jie, HAN Fu-sheng. The dynamic compressive behaviors of an open-cell aluminum foam[J]. Explosion And Shock Waves, 2006, 26(2): 169-173. doi: 10.11883/1001-1455(2006)02-0169-05 |
[19] | XIE Ruo-ze, ZHANG Fang-ju, YAN Yi-xia, TIAN Chang-jin, LI Yu-long, CHEN Yu-ze, LI Si-zhong, TAO Jun-lin. High-temperature SHPB experimental technique and its application[J]. Explosion And Shock Waves, 2005, 25(4): 330-334. doi: 10.11883/1001-1455(2005)04-0330-05 |
[20] | LI Jian, CHANG Li-hua, TAN Xian-xiang. Model 1000 ultra-high speed rotating mirror framing camera and applications[J]. Explosion And Shock Waves, 2005, 25(6): 574-576. doi: 10.11883/1001-1455(2005)06-0574-03 |
1. | 眭明斌,郭寻,王本鹏,邢飞,张一博,曹泽凝,覃莒铭,曹堂清,薛云飞. 基于SHPB的含能结构材料冲击释能特性测试系统设计. 实验技术与管理. 2025(02): 59-66 . ![]() | |
2. | 姬文苏,尹肖云,邹强,孙世岩,李勇. N b_1Zr_2Ti_1W_2高熵合金的冲击释能与破碎行为. 火炸药学报. 2025(03): 230-237 . ![]() | |
3. | 焦晓龙,王媛婧,吴宗娅,徐豫新. 内衬结构对活性破片高速驱动影响规律研究. 振动与冲击. 2024(04): 230-238 . ![]() | |
4. | 罗锐恒,智小琦,张姚瑶. Zr基非晶合金反应材料的力学性能与冲击烧蚀特性. 金属功能材料. 2023(03): 83-92 . ![]() | |
5. | 侯先苇,张先锋,熊玮,谈梦婷,刘闯,戴兰宏. 活性无序合金冲击的释能特性及在毁伤元中应用研究进展. 爆炸与冲击. 2023(09): 4-42 . ![]() | |
6. | 郭志平,王飞,姜波,张杰,程波,王传婷,何勇. ZrCuAlNi合金的Taylor撞击断裂行为研究. 兵器装备工程学报. 2022(05): 185-190 . ![]() | |
7. | 张玉令,施冬梅,张云峰,刘国庆,甄建伟. W骨架/Zr基非晶合金复合材料破片侵彻能力与后效研究. 爆炸与冲击. 2021(05): 58-66 . ![]() | |
8. | 邓晶鑫,胡会娥,苏小红,李瑜. 钨颗粒增强锆基非晶复材弹侵彻行为的数值模拟. 兵器装备工程学报. 2021(05): 173-179 . ![]() | |
9. | 张云峰,罗兴柏. Zr基非晶合金破片的侵彻破碎反应机理. 兵器装备工程学报. 2021(06): 133-139 . ![]() | |
10. | 孟元沛,郭志平,王传婷,何勇,何源,胡雪冰. ZrCuAlNiNb非晶合金的Taylor撞击断裂行为研究. 西北工业大学学报. 2021(06): 1296-1303 . ![]() | |
11. | 张云峰,罗兴柏,刘国庆,施冬梅. Zr基非晶合金JH-2模型的构建及应用. 爆炸与冲击. 2020(07): 64-76 . ![]() | |
12. | 尚春明,施冬梅,张云峰,徐雪涛. Zr基非晶合金毁伤研究进展. 兵器装备工程学报. 2020(07): 182-186 . ![]() | |
13. | 何丽灵,张方举,颜怡霞,谢若泽,徐艾民,周燕良. Ti-6Al-4V弹体破坏模式对冲击反应的影响研究. 爆炸与冲击. 2020(12): 58-69 . ![]() | |
14. | 尚春明,施冬梅,李文钊,石永相,徐雪涛. Zr基非晶合金燃烧热测试方法. 兵器装备工程学报. 2019(08): 193-197 . ![]() |