Volume 39 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
CHEN Yang, WU Liang, CHEN Ming, XIANG Xiaorui, YANG Deming. Characteristics of strain rate and strain energy during blasting unloading of high stress rock mass[J]. Explosion And Shock Waves, 2019, 39(10): 103202. doi: 10.11883/bzycj-2018-0225
Citation: CHEN Yang, WU Liang, CHEN Ming, XIANG Xiaorui, YANG Deming. Characteristics of strain rate and strain energy during blasting unloading of high stress rock mass[J]. Explosion And Shock Waves, 2019, 39(10): 103202. doi: 10.11883/bzycj-2018-0225

Characteristics of strain rate and strain energy during blasting unloading of high stress rock mass

doi: 10.11883/bzycj-2018-0225
  • Received Date: 2018-06-21
  • Rev Recd Date: 2019-06-11
  • Available Online: 2019-09-25
  • Publish Date: 2019-10-01
  • To explore the unloading of blasting excavation in highly-stressed rock masses for hydropower stations, an axial loading and unloading test platform was independently developed. The dynamic strain and strain rate data of rock bars during the blasting process were experimentally obtained. The measured data indicate that the strain rates in the rock bars are all above 10−1 s−1 during the blasting loading and unloading and the initial stress unloading near the excavation face. It is verified that the unloading of blasting excavation in the highly-stressed rock mass is a dynamic process. A one-dimensional mechanical model for the initial stress unloading was established, and the propagation mechanism of the unloading wave was revealed. By analyzing the temporal and spatial distribution characteristics of the strain energy density in the blasting unloading process, the relationship between the strain energy density and the strain rate rule in various stages of blasting was established. Based on the measured data, the implicit-explicit sequential solution method was applied to further analyze the variation of strain rate along the rock bar in different stages of the loading and unloading in deep rock mass. The results show that the average strain rate and the decay rate decrease gradually in the loading stage of the blasting. And the average strain rate in the unloading stage of the blasting decreases along the bar, while the strain energy induced by the initial stress can release steadily, and the corresponding average strain rate has no attenuation trend.
  • loading
  • [1]
    戚承志, 钱七虎. 岩石等脆性材料动力强度依赖应变率的物理机制 [J]. 岩石力学与工程学报, 2003, 22(2): 177–181. DOI: 10.3321/j.issn:1000-6915.2003.02.002.

    QI Chengzhi, QIAN Qihu. Physical mechanism of dependence of material strength on strain rate for rock-like material [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 177–181. DOI: 10.3321/j.issn:1000-6915.2003.02.002.
    [2]
    CHONG K P, HOYT P M, SMITH J W, et al. Effects of strain rate on oil shale fracturing [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(1): 35–43. DOI: 10.1016/0148-9062(80)90004-2.
    [3]
    GRADY D E, KIPP M E. Continuum modelling of explosive fracture in oil shale [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(3): 147–157. DOI: 10.1016/0148-9062(80)91361-3.
    [4]
    CAI M, KAISER P K, SUORINENI F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite [J]. Physics and Chemistry of the Earth, 2007, 32(8/14): 907–916. DOI: 10.1016/j.pce.2006.03.007.
    [5]
    周子龙, 李夕兵, 岩小明. 岩石SHPB测试中试样恒应变率变形的加载条件 [J]. 岩石力学与工程学报, 2009, 28(12): 2445–2452. DOI: 10.3321/j.issn:1000-6915.2009.12.009.

    ZHOU Zilong, LI Xibing, YAN Xiaoming. Loading condition for specimen deformation at constant strain rate in SHPB test of rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12): 2445–2452. DOI: 10.3321/j.issn:1000-6915.2009.12.009.
    [6]
    卢志堂, 王志亮. 中高应变率下花岗岩动力特性三轴试验研究 [J]. 岩土工程学报, 2016, 38(6): 1087–1094. DOI: 10.11779/CJGE201606016.

    LU Zhitang, WANG Zhiliang. Triaxial tests on dynamic properties of granite under intermediate and high strain rates [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1087–1094. DOI: 10.11779/CJGE201606016.
    [7]
    ZHAO J, LI H B. Experimental determination of dynamic tensile properties of granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5): 861–866. DOI: 10.1016/S1365-1609(00)00015-0.
    [8]
    李海波, 赵坚, 李俊如, 等. 三轴情况下花岗岩动态力学特性的实验研究 [J]. 爆炸与冲击, 2004, 24(5): 470–474.

    LI Haibo, ZHAO Jian, LI Junru, et al. Triaxial compression tests of a granite [J]. Explosion and Shock Waves, 2004, 24(5): 470–474.
    [9]
    张学峰, 夏源明. 中应变率材料试验机的研制 [J]. 实验力学, 2001, 16(1): 13–18. DOI: 10.7666/d.y359905.

    ZHANG Xuefeng, XIA Yuanming. Development of material testing apparatus for intermediate strain rate test [J]. Journal of Experimental Mechanics, 2001, 16(1): 13–18. DOI: 10.7666/d.y359905.
    [10]
    徐松林, 王鹏飞, 单俊芳, 等. 真三轴静载作用下混凝土的动态力学性能研究 [C] // 第十五届全国岩石动力学学术会议论文选集, 2017: 72−82. DOI: 10.13465/j.cnki.jvs.2018.15.008

    XU Songlin, WANG Pengfei, SHAN Junfang, et al. Dynamic behavior of concrete under static triaxial confinement [C] // The Fifteenth National Symposium on Rock Dynamics, 2017: 72−82. DOI: 10.13465/j.cnki.jvs.2018.15.008
    [11]
    于亚伦. 岩石动力学 [M]. 北京: 北京科技大学出版社, 1990: 1−50.
    [12]
    赵亚溥. 裂纹动态起始问题的研究进展 [J]. 力学进展, 1996, 26(3): 362–378. DOI: 10.6052/1000-0992-1996-3-j1996-030.

    ZHAO Yapu. The advances of studies on the dynamic initiation of cracks [J]. Advances in Mechanics, 1996, 26(3): 362–378. DOI: 10.6052/1000-0992-1996-3-j1996-030.
    [13]
    吴绵拔, 刘远惠. 中等应变速率对岩石力学特性的影响 [J]. 岩土力学, 1980(1): 54–61. DOI: 10.16285/j.rsm.1980.01.004.

    WU Mianba, LIU Yuanhui. The effect of intermediate strain rates on mechanical properties of rock [J]. Rock and Soil Mechanics, 1980(1): 54–61. DOI: 10.16285/j.rsm.1980.01.004.
    [14]
    LU Wenbo, YANG Jianhua, YAN Peng, et al. Dynamic response of rock mass induced by the transient release of in-situ stress [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 53: 129–141. DOI: 10.1016/j.ijrmms.2012.05.001.
    [15]
    严鹏, 卢文波, 许红涛. 高地应力条件下隧洞开挖动态卸荷的破坏机理初探 [J]. 爆炸与冲击, 2007, 27(3): 283–288. DOI: 10.11883/1001-1455(2007)03-0283-06.

    YAN Peng, LU Wenbo, XU Hongtao. A primary study to damage mechanism of initial stress dynamic unloading when excavating under high geo-stress condition [J]. Explosion and Shock Waves, 2007, 27(3): 283–288. DOI: 10.11883/1001-1455(2007)03-0283-06.
    [16]
    BAUCH E, LEMMP C. Rock splitting in the surrounds of underground openings: an experimental approach using triaxial extension test [C] // HACK R, CHARLIER R. Engineering Geology for Infrastructure Planning in Europe. Berlin: Springer-Verlag, 2004: 244−254. DOI: 10.1007/978-3-540-39918-6_29.
    [17]
    卢文波, 周创兵, 陈明, 等. 开挖卸荷的瞬态特性研究 [J]. 岩石力学与工程学报, 2008, 27(11): 2184–2194. DOI: 10.3321/j.issn:1000-6915.2008.11.003.

    LU Wenbo, ZHOU Chuangbing, CHEN Ming, et a1. Research on transient characteristics of excavation unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2184–2194. DOI: 10.3321/j.issn:1000-6915.2008.11.003.
    [18]
    蔡德文. 二滩地下厂房围岩的变形特征 [J]. 水电站设计, 2000, 16(4): 54–61. DOI: 10.3969/j.issn.1003-9805.2000.04.011.

    CAI Dewen. Deformation characteristics of surrounding rock during excavation in Ertan Underground Hydropower Station [J]. Design of Hydropower Station, 2000, 16(4): 54–61. DOI: 10.3969/j.issn.1003-9805.2000.04.011.
    [19]
    许红涛. 岩石高边坡爆破动力稳定性研究[D]. 武汉: 武汉大学, 2006.

    XU Hongtao. Study on the dynamic stability of high rock slope induced by blasting vibration [D]. Wuhan: Wuhan University, 2006.
    [20]
    ARFKEN G B, WEBER H J, HARRIS F E. Mathematical methods for physicists: a comprehensive guide [M]. 7th ed. Academic Press, 2012. DOI: 10.1063/1.3034326.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (6046) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return