Volume 39 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
LIU Haiqing, DUAN Zhuoping, BAI Zhiling, WEN Lijing, OU Zhuocheng, HUANG Fenglei. Experimental research on effects of porosity on shock initiation of PBX explosive[J]. Explosion And Shock Waves, 2019, 39(7): 072302. doi: 10.11883/bzycj-2018-0226
Citation: LIU Haiqing, DUAN Zhuoping, BAI Zhiling, WEN Lijing, OU Zhuocheng, HUANG Fenglei. Experimental research on effects of porosity on shock initiation of PBX explosive[J]. Explosion And Shock Waves, 2019, 39(7): 072302. doi: 10.11883/bzycj-2018-0226

Experimental research on effects of porosity on shock initiation of PBX explosive

doi: 10.11883/bzycj-2018-0226
  • Received Date: 2018-06-25
  • Rev Recd Date: 2018-08-15
  • Publish Date: 2019-07-01
  • To investigate the influence of the porosity (charge density) on the shock initiation and detonation of polymer bonded explosives (PBXes), a one-dimensional Lagrangian experimental testing system is adopted to measure the pressure-time histories at different Lagrangian locations of PBXC03 (87% HMX, 7% TATB, 6% binder by weight) with three different porosities (or charge densities), in which, an explosive plane-wave lens is used to generate a high-pressure planar detonation wave loading, and the Manganin piezoresistive pressure gauge measurement technique and the attenuation technique by both air-gap and Al-gap are used. The experimental results show that the detonation grows the fastest in the explosive with a moderate porosity. This work provides more detailed experimental data for the further development of mesoscopic reaction rate models for shock initiation of heterogeneous explosives.
  • loading
  • [1]
    AN C, LI H, YE B, et al. Preparation and characterization of ultrafine HMX/TATB explosive co-crystals [J]. Central European Journal of Energetic Materials, 2017, 14(4): 876–887. DOI: 10.22211/cejem/77125.
    [2]
    TALAWAR M B, AGARWAL A P, ANNIYAPPAN M, et al. Method for preparation of fine TATB (2-5 microm) and its evaluation in plastic bonded explosive (PBX) formulations [J]. Journal of Hazardous Materials, 2006, 137(3): 1848. DOI: 10.1016/j.jhazmat.2006.05.031.
    [3]
    WANG Z, GUO X, WU F, et al. Preparation of HMX/TATB composite particles using a mechanochemical approach [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(2): 327–333. DOI: 10.1002/prep.201500136.
    [4]
    GREBENKIN K F. Comparative analysis of physical mechanisms of detonation initiation in HMX and in a low-sensitive explosive (TATB) [J]. Combustion, Explosion, and Shock Waves, 2009, 45(1): 78–87. DOI: 10.1007/s10573-009-0011-y.
    [5]
    MASSONI J, SAUREL R, BAUDIN G, et al. A mechanistic model for shock initiation of solid explosives [J]. Physics of Fluids, 1999, 11(3): 710–736. DOI: 10.1063/1.869941.
    [6]
    BOURNE N K, MILNE A M. Shock to detonation transition in a plastic bonded explosive [J]. Journal of Applied Physics, 2004, 95(5): 2379–2385. DOI: 10.1063/1.1644632.
    [7]
    COOPER M, TROTT W. On the development of a modified wedge test for shock-to-detonation transition in explosives using ORVIS [C] // 17th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter. Chicago, Illinois, 2011.
    [8]
    URTIEW P A, TARVER C M. Shock initiation of energetic materials at different initial temperatures: review [J]. Combustion, Explosion, and Shock Waves, 2005, 41(6): 766–776. DOI: 10.1007/s10573-005-0085-0.
    [9]
    VANDERSALL K S, TARVER C M, GARCIA F, et al. Shock initiation experiments on PBX9501 explosive at 150 ℃ for ignition and growth modeling [C] // American Physical Society Meeting on Shock Compression of Condensed Matter, Baltimore, MD, United States, 2005.
    [10]
    白志玲, 段卓平, 景莉, 等. 飞片冲击起爆高能钝感高聚物粘结炸药的实验研究 [J]. 兵工学报, 2016, 37(8): 1464–1468. DOI: 10.3969/j.issn.1000-1093.2016.08.018.

    BAI Zhiling, DUAN Zhuoping, JING Li, et al. Experimental research on initiation of insensitive high energy plastic bonded explosive by flyer impact [J]. Acta Armamentarii, 2016, 37(8): 1464–1468. DOI: 10.3969/j.issn.1000-1093.2016.08.018.
    [11]
    温丽晶, 段卓平, 张震宇, 等. 不同加载压力下炸药冲击起爆过程实验和数值模拟研究 [J]. 兵工学报, 2013, 34(3): 283–288. DOI: 10.3969/j.issn.1000-1093.2013.03.005.

    WEN Lijing, DUAN Zhuoping, ZHANG Zhenyu, et al. Experimental and numerical study on the shock initiation of pbxc03 explosive under the different loading pressure [J]. Acta Armamentarii, 2013, 34(3): 283–288. DOI: 10.3969/j.issn.1000-1093.2013.03.005.
    [12]
    温丽晶, 段卓平, 张震宇, 等. HMX基和TATB基PBX炸药爆轰成长差别的实验研究 [J]. 爆炸与冲击, 2013, 33(S): 135–139.

    WEN Lijing, DUAN Zhuoping, ZHANG Zhenyu, et al. Experimental research on differences of detonation growth process between HMX-based and TATB-based plastic bonded explosives [J]. Explosion and Shock Waves, 2013, 33(S): 135–139.
    [13]
    WEN L J, DUAN Z P, ZHANG L S, et al. Effects of HMX particle size on the shock initiation of PBXC03 explosive [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13(2): 189–194. DOI: 10.1515/ijnsns.2011.129.
    [14]
    GIBSON L L, DATTELBAUM D, BARTRAM B, et al. Shock initiation sensitivity and Hugoniot-based equation of state of composition-B Obtained using in-situ electromagnetic gauging [J]. Journal of Physics Conference Series, 2014, 500(19): 192004. DOI: 10.1088/1742-6596/500/19/192004.
    [15]
    DUAN Z P, LIU Y, PI A G, et al. Foil-like manganin gauges for dynamic high pressure measurements [J]. Measurement Science and Technology, 2011, 22(7): 075206. DOI: 10.1088/0957-0233/22/7/075206.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (6051) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return