Citation: | CHENG Yihao, DENG Guoqiang, LI Gan, SONG Chunming, QIU Yanyu, ZHANG Zhongwei, WANG Derong, WANG Mingyang. Model experiments on penetration of layered geological material targets by hypervelocity rob projectiles[J]. Explosion And Shock Waves, 2019, 39(7): 073301. doi: 10.11883/bzycj-2018-0230 |
[1] |
杨秀敏, 邓国强. 常规钻地武器破坏效应的研究现状和发展 [J]. 后勤工程学院学报, 2016, 32(5): 1–9. DOI: 10.3969/j.issn.1672-7843.2016.05.001.
YANG Xiumin, DENG Guoqiang. The research status and development of damage effect of conventional earth penetration weapon [J]. Journal of Logistical Engineering University, 2016, 32(5): 1–9. DOI: 10.3969/j.issn.1672-7843.2016.05.001.
|
[2] |
ANTOUN T, GLENN L, WALTON O, et al. Simulation of hypervelocity penetration in limestone [J]. International Journal of Impact Engineering, 2005, 33(1): 45–52. DOI: 10.1016/j.ijimpeng.2006.09.009.
|
[3] |
WÜNNEMANN K, COLLINS G S, MELOSH H J. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets [J]. Icarus, 2006, 180(1): 514–527. DOI: 10.1016/j.icarus.2005.10.013.
|
[4] |
邓国强, 杨秀敏. 超高速武器打击效应数值仿真 [J]. 科技导报, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.
DENG Guoqiang, YANG Xiumin. Numerical simulation of damage effect of hypervelocity weapon on ground target [J]. Science and Technology Review, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.
|
[5] |
邓国强, 杨秀敏. 抗超高速武器最小安全防护层厚度计算 [J]. 防护工程, 2016, 38(1): 39–42.
DENG Guoqiang, YANG Xiumin. Estimation method of safety protective layer depth resisting hypervelocity weapon impact [J]. Protective Engineering, 2016, 38(1): 39–42.
|
[6] |
邓国强, 杨秀敏. 超高速武器流体侵彻与装药浅埋爆炸效应的等效方法 [J]. 防护工程, 2015, 37(6): 27–32.
DENG Guoqiang, YANG Xiumin. Effect equivalent method between fluid penetration of hypervelocity weapon and shallow detonation of explosive [J]. Protective Engineering, 2015, 37(6): 27–32.
|
[7] |
DAWSON A, BLESS S, LEVINSON S, et al. Hypervelocity penetration of concrete [J]. International Journal of Impact Engineering, 2008, 35(1): 1484–1489. DOI: 10.1016/j.ijimpeng.2008.07.069.
|
[8] |
牛雯霞, 黄洁, 柯发伟, 等. 混凝土房屋结构靶的超高速撞击特性研究 [J]. 实验流体力学, 2014, 28(2): 79–84. DOI: 10.11729/syltlx2014pz38.
NIU Wenxia, HUANG Jie, KE Fawei, et al. Research on hypervelocity impact characteristics of concrete building structures target [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 79–84. DOI: 10.11729/syltlx2014pz38.
|
[9] |
王鹏, 郭磊, 余道建, 等. 动能棒超高速对混凝土靶板撞击毁伤效应研究 [C] // 第一届全国超高速碰撞会议论文集. 四川绵阳: 中国空气动力研究与发展中心, 2013: 145−150.
|
[10] |
钱秉文, 周刚, 李进, 等. 钨合金弹体超高速撞击混凝土靶成坑特性研究 [C] // 第十一届全国爆炸力学学术会议论文集. 珠海, 广东: 中国力学学会爆炸力学专业委员会, 2016.
|
[11] |
CHENG Y H, WANG M Y, SHI C C, et al. Constraining damage size and crater depth: a physical model of transient crater formation in rocky targets [J]. International Journal of Impact Engineering, 2015, 81(6): 50–60. DOI: 10.1016/j.ijimpeng.2015.03.009.
|
[12] |
SHI C C, WANG M Y, ZHANG K L, et al. Semi-analytical model for rigid and erosive long rods penetration into sand with consideration of compressibility [J]. International Journal of Impact Engineering, 2015, 83(1): 1–10. DOI: 10.1016/j.ijimpeng.2015.04.007.
|
[13] |
李卧东, 王明洋, 施存程, 等. 地质类材料超高速撞击相似关系与实验研究综述 [J]. 防护工程, 2015, 37(2): 55–62.
LI Wodong, WANG Mingyang, SHI Cuncheng, et al. Review of similarity laws and scaling experiments research of hypervelocity impact on geological material targets [J]. Protective Engineering, 2015, 37(2): 55–62.
|
[14] |
王明洋, 邱艳宇, 李杰, 等. 超高速长杆弹对岩石侵彻、地冲击效应理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(3): 564–572. DOI: 10.13722/j.cnki.jrme.2017.1348.
WANG Mingyang, QIU Yanyu, LI Jie. Theoretical and experimental study on rock penetration and ground impact effects of hypervelocity long rod projectile [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 564–572. DOI: 10.13722/j.cnki.jrme.2017.1348.
|
[15] |
宋春明, 李干, 王明洋, 等. 不同速度段弹体侵彻岩石靶体的理论分析 [J]. 爆炸与冲击, 2018, 38(2): 250–257. DOI: 10.11883/bzycj-2017-0198.
SONG Chunming, LI Gan, WANG Mingyang, et al. Theoretical analysis of projectile penetrating into rock targets at different velocities [J]. Explosion and Shock Waves, 2018, 38(2): 250–257. DOI: 10.11883/bzycj-2017-0198.
|
[16] |
李干, 宋春明, 邱艳宇, 等. 超高速弹对花岗岩侵彻深度逆减现象的理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.
LI Gan, SONG Chunming, QIU Yanyu, et al. Theoretical and experimental studies on the phenomenon of penetration depth reverse reduction in the penetration of granite by hyper-velocity projectiles [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.
|
[17] |
张自强. 装甲防护技术基础 [M]. 北京: 兵器工业出版社, 2000: 140−144.
|
[18] |
张庆明, 黄风雷. 超高速碰撞动力学引论 [M]. 北京: 科学出版社, 2000: 121−136.
|
[19] |
刘峥, 程怡豪, 邱艳宇, 等. 成层式防护结构抗超高速侵彻的数值分析 [J]. 爆炸与冲击, 2018, 38(6): 1317–1324. DOI: 10.11883/bzycj-2017-0181.
LIU Zheng, CHENG Yihao, QIU Yanyu, et al. Numerical analysis on hypervelocity penetration into layered protective structure [J]. Explosion and Shock Waves, 2018, 38(6): 1317–1324. DOI: 10.11883/bzycj-2017-0181.
|
[20] |
ORPHAL D L, ANDERSON C E. The dependence of penetration velocity on impact velocity [J]. International Journal of Impact Engineering, 2006, 33(1): 546–554. DOI: 10.1016/j.ijimpeng.2006.09.054.
|
[21] |
WU H, FANG Q, PENG Y, et al. Hard projectile perforation on the monolithic and segmented RC panels with a rear steel liner [J]. International Journal of Impact Engineering, 2015, 76(1): 232–250. DOI: 10.1016/j.ijimpeng.2014.10.010.
|
[22] |
高光发, 李永池, 李平, 等. 防护工程复合遮弹层结构探讨 [J]. 弹箭与制导学报, 2011, 31(5): 99–101. DOI: 10.3969/j.issn.1673-9728.2011.05.029.
GAO Guangfa, LI Yongchi, LI Ping, et al. The research on composite structure of shielding cover in protective engineering [J]. Journal of projectiles, Rockets, Missiles and Guidance, 2011, 31(5): 99–101. DOI: 10.3969/j.issn.1673-9728.2011.05.029.
|
[23] |
颜海春, 方秦, 陈力. 遮弹层震塌碎块对成层式结构顶板的冲击破坏效应 [J]. 解放军理工大学学报(自然科学版), 2008, 9(1): 52–56. DOI: 10.3969/j.issn.1009-3443.2008.01.011.
YAN Haichun, FANG Qin, CHEN Li. Damage effect on top plate of layered structure under impact of falling mass from blast layer [J]. Journal of PLA University of Science and Technology (Natural Science Edition) , 2008, 9(1): 52–56. DOI: 10.3969/j.issn.1009-3443.2008.01.011.
|
[1] | QIAN Bingwen, ZHOU Gang, LI Mingrui, CHEN Chunlin, GAO Pengfei, SHEN Zikai, MA Kun. Influences of material properties of a projectile on hypervelocity penetration depth[J]. Explosion And Shock Waves, 2024, 44(10): 103302. doi: 10.11883/bzycj-2022-0310 |
[2] | FENG XiaoWei, LI Juncheng, LU Yonggang, WANG Shouqian, LU Zhengcao, LIU Chuang, FU Dan. Characteristics of high-mass tungsten alloy kinetic projectile penetrating ultra-high strength steel targets at high velocity[J]. Explosion And Shock Waves, 2023, 43(9): 091410. doi: 10.11883/bzycj-2023-0016 |
[3] | MA Kun, LI Mingrui, CHEN Chunlin, SHEN Zikai, ZHOU Gang. The application of a modified constitutive model of metals in the simulation of hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(9): 091406. doi: 10.11883/bzycj-2021-0315 |
[4] | YANG Renshu, ZHAO Yong, ZHAO Jie, ZUO Jinjing, GE Fengyuan, CHEN Cheng, DING Chenxi. Experimental study on evolution of strain field of explosion stress wave passing through a heterogeneous interface based on the DIC method[J]. Explosion And Shock Waves, 2022, 42(12): 123201. doi: 10.11883/bzycj-2022-0097 |
[5] | ZHANG Shanbao, KONG Xiangzhen, FANG Qin, HONG Jian. Numerical simulation on ground shock waves induced by hypervelocity penetration of a projectile into a limestone target[J]. Explosion And Shock Waves, 2022, 42(1): 013302. doi: 10.11883/bzycj-2021-0007 |
[6] | ZHOU Gang, LI Mingrui, WEN Heming, QIAN Bingwen, SUO Tao, CHEN Chunlin, MA Kun, FENG Na. Mechanism on hypervelocity penetration of a tungsten alloy projectile into a concrete target[J]. Explosion And Shock Waves, 2021, 41(2): 021407. doi: 10.11883/bzycj-2020-0304 |
[7] | LU Hao, YUE Songlin, SUN Shanzheng, SONG Chunming, XIONG Ziming. Model test study on damage depth of concrete target under penetration and explosion[J]. Explosion And Shock Waves, 2021, 41(7): 073301. doi: 10.11883/bzycj-2020-0191 |
[8] | CHENG Yihao, WANG Mingyang, WANG Derong, SONG Chunming, YUE Songlin, TAN Yizhong. Discussion on essences of static resistance of two types of material under penetration[J]. Explosion And Shock Waves, 2020, 40(6): 061101. doi: 10.11883/bzycj-2019-0443 |
[9] | WANG Jie, WU Haijun, ZHOU Jiequn, SHI Xiaohai, LI Jinzhu, PI Aiguo, HUANG Fenglei. Experiment research and crater analysis of long rodhypervelocity penetration into concrete[J]. Explosion And Shock Waves, 2020, 40(9): 093301. doi: 10.11883/bzycj-2019-0439 |
[10] | QIAN Bingwen, ZHOU Gang, LI Jin, LI Yunliang, ZHANG Dezhi, ZHANG Xiangrong, ZHU Yurong, TAN Shushun, JING Jiyong, ZHANG Zidong. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target[J]. Explosion And Shock Waves, 2019, 39(8): 083301. doi: 10.11883/bzycj-2019-0141 |
[11] | XIE Ruoze, ZHONG Weizhou, HUANG Xicheng, ZHANG Fangju. Impact response of scaled models of an energy-absorbing container[J]. Explosion And Shock Waves, 2019, 39(10): 103103. doi: 10.11883/bzycj-2018-0311 |
[12] | DENG Jiajie, ZHANG Xianfeng, LIU Chuang, WANG Wenjie, XU Chenyang. Experimental and theoretical study of symmetrical grooved-nose projectile penetrating into semi-infinite aluminum target[J]. Explosion And Shock Waves, 2018, 38(6): 1231-1240. doi: 10.11883/bzycj-2017-0413 |
[13] | LIU Zheng, CHENG Yihao, QIU Yanyu, DENG Guoqiang, WANG Mingyang. Numerical analysis on hypervelocity penetration into layered protective structure[J]. Explosion And Shock Waves, 2018, 38(6): 1317-1324. doi: 10.11883/bzycj-2017-0181 |
[14] | Shan Renliang, Huang Bo, Geng Huihui, Bai Yao, Yan Fayuan. Model experiment to study cumulative damage effects of young shotcrete under blasting load[J]. Explosion And Shock Waves, 2016, 36(3): 289-296. doi: 10.11883/1001-1455(2016)03-0289-08 |
[15] | Zhong Guosheng, Ao Liping, Fu Yuhua. Model experimental studies of vibration effect and damage evolution of tunnel's surrounding rock under cyclic blasting excavation[J]. Explosion And Shock Waves, 2016, 36(6): 853-860. doi: 10.11883/1001-1455(2016)06-0853-08 |
[16] | Zhang Qingbin, Yang Junsheng, Wu Congshi, Zhang Xuemin, Liang Kuisheng, Liu Hongzhen, Fang Fenghua. Experiment of explosive consumption by blasting pretreated boulders with overlying stratum of rock-soil[J]. Explosion And Shock Waves, 2016, 36(5): 695-702. doi: 10.11883/1001-1455(2016)05-0695-08 |
[17] | YangYang, XuFei, ZhangYue-qing, MoJian-jun, TaoYan-hui. Hypervelocityimpactexperimentontwo-dimensional plain-wovenC/SiCcomposites[J]. Explosion And Shock Waves, 2013, 33(2): 156-162. doi: 10.11883/1001-1455(2013)02-0156-07 |
[18] | LiYi-min, GaoZheng-guo, ZhuQing-qing, HuangXiao-bo, HuangXi. An experimental investigation into effects of blast-induced vibration on strength of early-age concrete[J]. Explosion And Shock Waves, 2013, 33(3): 243-248. doi: 10.11883/1001-1455(2013)03-0243-06 |
[19] | LI Hai-wang, GUO Ke, WEI Jian-wei, QIN Dong-qi. The dynamic response of a single-layer reticulated shell to drop hammer impact[J]. Explosion And Shock Waves, 2006, 26(1): 39-45. doi: 10.11883/1001-1455(2006)01-0039-07 |
1. | 谭仪忠,戴伟,李杰,李干,张中威,史小敏. 冻土靶体抗侵彻特性试验与抗侵彻深度计算. 振动与冲击. 2025(09): 250-256 . ![]() | |
2. | 钱秉文,周刚,李名锐,陈春林,高鹏飞,沈子楷,马坤. 弹体材料性能对超高速侵彻深度的影响规律. 爆炸与冲击. 2024(10): 158-168 . ![]() |