Citation: | YU Zhongshen, FANG Xiang, LI Yuchun, REN Junkai, ZHANG Jun, SONG Jiaxing. Effects of TiH2 content on dynamic mechanical properties and impact sensitivity of Al/PTFE[J]. Explosion And Shock Waves, 2019, 39(9): 092301. doi: 10.11883/bzycj-2018-0256 |
[1] |
WANG Huaixi, LI Yuchun, FENG Bin, et al. Compressive properties of PTFE/Al/Ni composite under uniaxial loading [J]. Journal of Materials Engineering and Performance, 2017, 26(5): 2331–2336. DOI: 10.1007/s11665-017-2666-y.
|
[2] |
XU Fengyue, LIU Shubo, ZHENG Yuanfeng, et al. Quasi-static compression properties and failure of PTFE/Al/W reactive materials [J]. Advanced Engineering Materials, 2017, 19(1): 1600350. DOI: 10.1002/adem.201600350.
|
[3] |
FENG Bin, FANG Xiang, LI Yuchun, et al. An initiation phenomenon of Al-PTFE under quasi-static compression [J]. Chemical Physics Letters, 2015, 637: 38–41. DOI: 10.1016/j.cplett.2015.07.056.
|
[4] |
徐松林. PTFE/A1含能反应材料力学性能研究[D]. 长沙: 国防科学技术大学, 2010.
|
[5] |
葛超, 乌布力艾散·麦麦提图尔荪, 田超, 等. 基于气炮实验的PTFE/Al 复合材料冲击反应阈值 [J]. 爆炸与冲击, 2018, 38(1): 1–8. DOI: 10.11883/bzycj-2017-0030.
GE Chao, MAIMAITITUERSUN Wubuliaisan, TIAN Chao, et al. Impact-induced initiation thresholds of polytetrafluoroethylene/Al composite by gas gun [J]. Explosion and Shock Waves, 2018, 38(1): 1–8. DOI: 10.11883/bzycj-2017-0030.
|
[6] |
ZHANG X F, ZHANG J, QIAO L, et al. Experimental study of the compression properties of Al/W/PTFE granular composites under elevated strain rates [J]. Material Science and Engineering: A, 2013, 581(10): 48–55. DOI: 10.1016/j.msea.2013.05.063.
|
[7] |
WANG Liu, LIU Jinxu, LI Shukui, et al. Investigation on reaction energy, mechanical behavior and impact insensitivity of W/PTFE/Al composites with different W percentage [J]. Materials and Design, 2016, 92(5): 397–404. DOI: 10.1016/j.matdes.2015.12.045.
|
[8] |
徐松林, 阳世清, 张炜, 等. PTFE/Al含能复合物的本构关系 [J]. 爆炸与冲击, 2010, 30(4): 439–444. DOI: 10.11883/1001-1455(2010)04-0439-06.
XU Songlin, YANG Shiqing, ZHANG Wei, et al. A constitutive relation for a pressed PTFE/Al energetic composite material [J]. Explosion and Shock Waves, 2010, 30(4): 439–444. DOI: 10.11883/1001-1455(2010)04-0439-06.
|
[9] |
任会兰, 李蔚, 刘晓俊, 等. 钨颗粒增强铝/聚四氟乙烯材料的冲击反应特性 [J]. 兵工学报, 2016, 37(5): 872–878. DOI: 10.3969/j.issn.1000-1093.2016.05.014.
REN Huilan, LI Wei, LIU Xiaojun, et al. Reaction behaviors of Al/PTFE materials enhanced by W particles [J]. Acta Armamentarii, 2016, 37(5): 872–878. DOI: 10.3969/j.issn.1000-1093.2016.05.014.
|
[10] |
周杰, 何勇, 何源, 等. Al/PTFE/W反应材料的准静态压缩性能与冲击释能特性 [J]. 含能材料, 2017, 25(11): 903–912. DOI: 10.11943/j.issn.1006-9941.2017.11.004.
ZHOU Jie, HE Yong, HE Yuan, et al. Quasi-static compression and impact energy release characteristics of reactive materials [J]. Chinese Journal of Energetic Materials, 2017, 25(11): 903–912. DOI: 10.11943/j.issn.1006-9941.2017.11.004.
|
[11] |
乌布力艾散·麦麦提图尔荪, 葛超, 董永香, 等. SHPB 加载下 PTFE/Al冲击反应的临界条件 [J]. 爆炸与冲击, 2018, 38(5): 957–965. DOI: 10.11883/bzycj-2017-0075.
MAIMAITITUERSUN Wubuliaisan, GE Chao, DONG Yongxiang, et al. Research on the impact-induced initiation criteria of PTFE/Al by split Hopkinson pressure bar [J]. Explosion and Shock Waves, 2018, 38(5): 957–965. DOI: 10.11883/bzycj-2017-0075.
|
[12] |
FENG B, LI Y C, WU S Z, et al. A crack-induced initiation mechanism of Al-PTFE under quasi-static compression and the investigation of influencing factors [J]. Materials and Design, 2016, 108: 411–417. DOI: 10.1016/j.matdes.2016.06.125.
|
[13] |
ZHANG Xinbo, LIU Jinxu, WANG Liu, et al. Effects of Al and W particle size on combustion characteristics and dynamic response of W-PTFE-Al composites [J]. Rare Metal Materials and Engineering, 2018, 47(6): 1723–1728. DOI: 10.1016/S1875-5372(18)30156-5.
|
[14] |
GE C, DONG Y X, MAIMAITITUERSUN W. Microscale simulation on mechanical properties of Al/PTFE composite based on real microstructures [J]. Materials, 2016, 9(7): 590–605. DOI: 10.3390/ma9070590.
|
[15] |
HUNT E M, MALCOLM S, PANTOYA M L, et al. Impact ignition of nano and micron composite energetic materials [J]. International Journal of Impact Engineering, 2009, 36(6): 842–846. DOI: 10.1016/j.ijimpeng.2008.11.011.
|
[16] |
李辰芳. 用氢化钛提高固体推进剂燃速的研究 [J]. 飞航导弹, 1997, 9(6): 34–37. DOI: 10.16338/j.issn.1009-1319.1997.06.009.
|
[17] |
薛冰, 马宏昊, 陈伟, 等. RDX基钛氢复合炸药空中爆炸性能 [J]. 含能材料, 2015, 23(11): 1046–1050. DOI: 10.11943/j.issn.1006-9941.2015.11.002.
XUE Bing, MA Honghao, CHEN Wei, et al. Air explosion property of RDX-based titanium hydride composite explosive [J]. Chinese Journal of Energetic Materials, 2015, 23(11): 1046–1050. DOI: 10.11943/j.issn.1006-9941.2015.11.002.
|
[18] |
COLLINS L W. The stability and compatibility of TiHx/KClO4 pyrotechnics [J]. Journal Hazardous Materials, 1982, 5(4): 325–333. DOI: 10.1016/0304-3894(82)85021-8.
|
[19] |
COLLINS L W. Thermal ignition of titanium based pyrotechnics [J]. Combustion and Flame, 1981, 41(3): 325–330. DOI: 10.1016/0010-2180(81)90066-3.
|
[20] |
于钟深, 方向, 高振儒, 等. TiH2含量对Al/PTFE准静态压缩力学性能和反应特性的影响 [J]. 含能材料, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387.
YU Zhongshen, FANG Xiang, GAO Zhenru, et al. Effect of TiH2 content on mechanical properties and reaction characteristics of Al/PTFE under quasi-static compression [J]. Chinese Journal of Energetic Materials, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387.
|
[21] |
王爱玉, 阮庆云, 陈海云, 等. 炸药实验方法: GJB772A-97 [S]. 北京: 国防科学技术工业委员会, 1997.
|
[22] |
YU Zhongshen, FIANG Xiang, GAO Zhenru, et al. Mechanical and reaction properties of Al/TiH2/PTFE under quasi-static compression [J]. Advanced Engineering Materials, 2018, 20: 1800019. DOI: 10.1002/adem.201800019.
|
[23] |
AMES R. Energy release characteristics of impact-initiated energetic materials [C] // MRS Proceedings, 2005, 896(3): 321−333. DOI: 10.1557/PROC-0896-H03-08.
|
[1] | CUI Peng, LUO Gang, LIU Le, CAO Xinxin, LI Bangxiang, MEI Xuefeng. Experimental study on crushing characteristics and energy absorption effect of silica sand under dynamic loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0309 |
[2] | XIAO Xianfeng, XU Jianlong, WU Zuxi, YE Xiaojun, FU Yanshu. Research progress on mechanical properties of additive manufacturing Ti-6Al-4V alloy under static and dynamic loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0225 |
[3] | MIAO Chunhe, XU Songlin, MA Hao, YUAN Liangzhu, LU Jianhua, WANG Pengfei. An experimental technique for medium strain-rate loading by a progressive cam[J]. Explosion And Shock Waves, 2023, 43(3): 034101. doi: 10.11883/bzycj-2022-0344 |
[4] | GAO Yulong, SUN Xiaohong. On the parameters of dynamic deformation and damage models of aluminum alloy 6008-T4 used for high-speed railway vehicles[J]. Explosion And Shock Waves, 2021, 41(3): 033101. doi: 10.11883/bzycj-2020-0119 |
[5] | GAO Yukui, TAO Xuefei. A review on the influences of high speed impact surface treatments on mechanical properties and microstructures of metallic materials[J]. Explosion And Shock Waves, 2021, 41(4): 041401. doi: 10.11883/bzycj-2020-0342 |
[6] | SONG Min, ZHANG Jie, CHEN Qingqing, WANG Zhiyong, WANG Zhihua. Fracture behaviors of lightly reinforced concrete beams under different loading rates[J]. Explosion And Shock Waves, 2021, 41(6): 063102. doi: 10.11883/bzycj-2020-0121 |
[7] | WANG Zhuangzhuang, XU Peng, FAN Zhiqiang, MIAO Yuzhong, GAO Yubo, NIE Taoyi. Study on static and dynamic mechanical properties and fracture mechanism of cenospheres[J]. Explosion And Shock Waves, 2020, 40(6): 063101. doi: 10.11883/bzycj-2019-0337 |
[8] | LIU Yajun, HE Yulong, LIU Shanshan, LI Zhiqiang. Energy absorption capacity of regular polygon-based multi-cell tubes[J]. Explosion And Shock Waves, 2020, 40(7): 071404. doi: 10.11883/bzycj-2019-0423 |
[9] | JIAO Chujie, LI Xibo, CHENG Congmi, LI Congbo. Dynamic damage constitutive relationship of high strength concrete based on fractal theory[J]. Explosion And Shock Waves, 2018, 38(4): 925-930. doi: 10.11883/bzycj-2016-0377 |
[10] | LIU Longfei, ZHOU Qiang. Effect of surface roughness on impact expansion fracture of 6061 aluminum alloy thin-walled cylindrical tube[J]. Explosion And Shock Waves, 2018, 38(4): 749-758. doi: 10.11883/bzycj-2016-0389 |
[11] | Yuan Fang-qiang, Cai Cong-zhong, Zhao Shuai. Prediction of impact sensitivity of nitro energetic compounds by using structural parameters[J]. Explosion And Shock Waves, 2013, 33(1): 79-84. doi: 10.11883/1001-1455(2013)01-0079-06 |
[12] | TAO Jun-lin, QIN Li-bo, LI Kui, LIU Dan, JIA Bin, CHEN Xiao-wei, CHEN Gang. Experimentalinvestigationondynamiccompressionmechanical performanceofconcreteathightemperature[J]. Explosion And Shock Waves, 2011, 31(1): 101-106. doi: 10.11883/1001-1455(2011)01-0101-06 |
[13] | WANG Bao-zhen, ZHEN Yu-xuan, HU Shi-sheng. Dynamictensilepropertiesofporcineham muscle[J]. Explosion And Shock Waves, 2010, 30(5): 449-455. doi: 10.11883/1001-1455(2010)05-0449-07 |
[14] | XIE Ruo-ze, HU Wen-jun, CHEN Cheng-jun, PAN Xiao-xia, HE Peng, ZHANG Fang-ju, CHEN Jie. DynamiccompressivemechanicalpropertiesofV-5Cr-5Ti atroomtemperature[J]. Explosion And Shock Waves, 2010, 30(6): 641-646. doi: 10.11883/1001-1455(2010)06-0641-06 |
[15] | WANG Bao-guo, CHEN Ya-fang, ZHANG Jing-lin, GAO Min. Preparation, characterization and performances of submicron -CL-20[J]. Explosion And Shock Waves, 2009, 29(5): 550-554. doi: 10.11883/1001-1455(2009)05-0550-05 |
[16] | DOU Jin-long, WANG Xu-guang, LIU Yun-chuan. Dynamic mechanical behaviors of poplar wood[J]. Explosion And Shock Waves, 2008, 28(4): 367-371. doi: 10.11883/1001-1455(2008)04-0367-05 |
[17] | CHEN Cheng-jun, XIE Ruo-ze, ZHANG Fang-ju, ZHAO Ya-bin, LU Zi-xing. An application of Taylor impact experiment to study mechanical behaviors of an aluminum-alloy foam[J]. Explosion And Shock Waves, 2008, 28(2): 166-171. doi: 10.11883/1001-1455(2008)02-0166-06 |
[18] | MA Xiu-fang, ZHAO Feng, XIAO Ji-jun, JI Guang-fu, ZHU Wei, XIAO He-ming. Simulation study on structure and property of HMX-based multi-components PBX[J]. Explosion And Shock Waves, 2007, 27(2): 109-115. doi: 10.11883/1001-1455(2007)02-0109-07 |
[19] | DAI Xiao-gan, XIANG Yong, SHEN Chun-ying, WU Xiao-yong. Study of drop hammer impact sensitivity for big-bill explosives[J]. Explosion And Shock Waves, 2006, 26(4): 381-384. doi: 10.11883/1001-1455(2006)04-0381-04 |
[20] | XIE Ruo-ze, ZHANG Fang-ju, YAN Yi-xia, TIAN Chang-jin, LI Yu-long, CHEN Yu-ze, LI Si-zhong, TAO Jun-lin. High-temperature SHPB experimental technique and its application[J]. Explosion And Shock Waves, 2005, 25(4): 330-334. doi: 10.11883/1001-1455(2005)04-0330-05 |