Volume 39 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
LI Shangkun, FENG Xiaowei, XIE Ruoze, ZHANG Fangju, HU Wenjun, XU Weifang, HUANG Xicheng. Dynamic compression property of distill-water ice and impurity-water ice at high strain rates[J]. Explosion And Shock Waves, 2019, 39(9): 093103. doi: 10.11883/bzycj-2018-0270
Citation: LI Shangkun, FENG Xiaowei, XIE Ruoze, ZHANG Fangju, HU Wenjun, XU Weifang, HUANG Xicheng. Dynamic compression property of distill-water ice and impurity-water ice at high strain rates[J]. Explosion And Shock Waves, 2019, 39(9): 093103. doi: 10.11883/bzycj-2018-0270

Dynamic compression property of distill-water ice and impurity-water ice at high strain rates

doi: 10.11883/bzycj-2018-0270
  • Received Date: 2018-07-24
  • Rev Recd Date: 2018-12-04
  • Publish Date: 2019-09-01
  • The dynamic strength of three kinds of ice specimens at −18 ℃ were tested by the split Hopkinson pressure bar (SHPB) method. The pulse-shaping technology was used to achieve constant strain rate loading and stress equalization. The double-peak phenomena of reflection wave and transmission wave were explained by comparing with stress waveforms. The compression stress of distill-water ice in the strain rate range from 700 to 2 700 s−1 is 14.5−49.3 MPa, and it is much higher than the static data. Generally, the dynamic compression stress of the impurity-water ice is higher than that of the distill-water ice, this indicate that the ice specimens become harder after adding impurities, and the capability to resist deformation is enhanced. Compared with a-type and c-type specimens, the crack stress of b-type specimens becomes higher and its dispersiveness is lower. This indicates that the adhesive forces between impurities and ice crystals become stronger, and the expending and nucleate process of cracks is restrained.
  • loading
  • [1]
    汪洋, 李玉龙, 刘传雄. 利用SHPB测定高应变率下冰的动态力学行为 [J]. 爆炸与冲击, 2011, 31(2): 215–219. DOI: 10.11883/1001-1455(2011)02-0215-05.

    WANG Yang, LI Yulong, LIU Chuanxiong. Dynamic mechanical behaviors of ice at high strain rates [J]. Explosion and Shock Waves, 2011, 31(2): 215–219. DOI: 10.11883/1001-1455(2011)02-0215-05.
    [2]
    WU X, VIKAS P. Dynamic strength of distill water and lake water ice high strain rate [J]. International Journal of Impact Engineering, 2015, 76: 155–165. DOI: 10.1016/j.ijimpeng.2014.09.013.
    [3]
    SCHULSON E M. The structure and mechanical behavior of ice [J]. Journal of the Minerals Metals and Materials Society, 1999, 51(2): 21–27. DOI: 10.1007/s11837-999-0206-4.
    [4]
    MAJID K, MASOUD F. Compressive strength of atmospheric ice [J]. Cold Regions Science and Technology, 2007, 49: 195–205. DOI: 10.1016/j.coldregions.2007.05.003.
    [5]
    SCHULSON E M. Brittle failure of ice [J]. Engineering Fracture Mechanics, 2001, 68(18): 39−87. DOI: 10.1016/S0013-7944(01)00037-6.
    [6]
    SHAZLY M, PRAKASH V, LERCH B A. High strain-rate behavior of ice under uniaxial compression [J]. International Journal of Solids and Structures, 2009, 46(6): 1499–1515. DOI: 10.1016/j.ijsolstr.2008.11.020.
    [7]
    王礼立, 王永刚. 应力波在用SHPB研究材料动态本构特性中的重要作用 [J]. 爆炸与冲击, 2005, 25(1): 17–25. DOI: 10.11883/1001-1455(2005)01-0017-09.

    WANG Lili, WANG Yonggang. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB [J]. Explosion and Shock Waves, 2005, 25(1): 17–25. DOI: 10.11883/1001-1455(2005)01-0017-09.
    [8]
    PETROVIC J J. Mechanical properties of ice and snow [J]. Materials Science, 2003, 38(1): 1–6. DOI: 10.1023/A:1021134128038.
    [9]
    陈刚, 张青平, 黄西成. 基于软材料的SHPB波形整形技术 [J]. 中国科学: 技术科学, 2016, 46: 393–399. DOI: 1360/N092015-00368.

    CHEN Gang, ZHANG Qingping, HUANG Xicheng. Pulse shaping with soft material for SHPB [J]. Sciatica Sinica: Technological, 2016, 46: 393–399. DOI: 1360/N092015-00368.
    [10]
    LV T H, CHEN X W, CHEN G. Analysis on the wave form features of the split Hopkinson pressure bar tests of plain concrete specimen [J]. International Journal of Impact Engineering, 2017, 103: 107–123. DOI: 10.1016/j.ijimpeng.2017.01.004.
    [11]
    JONES S. High strain-rate compression test on ice [J]. Journal of Physical Chemistry: B, 1997, 101(6): 99–101.
    [12]
    冯晓伟, 冯高鹏, 方辉. 不同应变率下冰破坏特性的试验研究 [J]. 应用力学学报, 2016, 33(2): 223–229. DOI: 10.11776/cjam.33.02.B035.

    FENG Xiaowei, FENG Gaopeng, FANG Hui. Experimental investigation on compressive failure behavior of fresh-water ice at different compressive rates [J]. Chinese Journal of Applied Mechanics, 2016, 33(2): 223–229. DOI: 10.11776/cjam.33.02.B035.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (5017) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return