Citation: | MA Tianbao, WU Jun, NING Jianguo. Experimental and numerical study on projectiles’ high-velocity penetration into reinforced concrete[J]. Explosion And Shock Waves, 2019, 39(10): 103301. doi: 10.11883/bzycj-2018-0275 |
[1] |
HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. DOI: 10.1016/0734-743X(92)90282-X.
|
[2] |
FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
|
[3] |
武海军, 黄风雷, 王一楠. 高速弹体非正侵彻混凝土试验研究 [C] // 第八届全国爆炸力学学术会议论文集. 江西吉安: 中国力学学会爆炸力学专业委员会, 2007: 488−494.
|
[4] |
梁斌, 陈小伟, 姬永强, 等. 先进钻地弹概念弹的次口径高速深侵彻实验研究 [J]. 爆炸与冲击, 2008, 28(1): 1–9. DOI: 10.11883/1001-1455(2008)01-0001-09.
LIANG Bin, CHEN Xiaowei, JI Yongqiang, et al. Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon [J]. Explosion and Shock Waves, 2008, 28(1): 1–9. DOI: 10.11883/1001-1455(2008)01-0001-09.
|
[5] |
何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土的效应实验 [J]. 爆炸与冲击, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.
HE Xiang, XU Xiangyun, SUN Guijuan, et al. Experimental investigation on projectiles’ high-velocity penetration into concrete targets [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.
|
[6] |
王可慧, 宁建国, 李志康. 高速弹体非正侵彻混凝土靶的弹道偏转实验研究 [J]. 高压物理学报, 2013, 27(4): 561–566. DOI: 10.11858/gywlxb.2013.04.015.
WANG Kehui, NING Jianguo, LI Zhikang, et al. Ballistic trajectory of high-velocity projectile obliquely penetrating concrete target [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 561–566. DOI: 10.11858/gywlxb.2013.04.015.
|
[7] |
武海军, 张爽, 黄风雷. 钢筋混凝土靶的侵彻与贯穿研究进展 [J]. 兵工学报, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-1093.2018.01.020.
WU Haijun, ZHANG Shuang, HUANG Fenglei. Research progress in penetration/perforation into reinforced concrete targets [J]. Acta Armamentarii, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-1093.2018.01.020.
|
[8] |
王明洋, 钱七虎, 赵跃堂. 接触爆炸作用下钢板-钢纤维钢筋混凝土遮弹层设计方法: Ⅱ [J]. 爆炸与冲击, 2002, 22(2): 163–168.
WANG Mingyang, QIAN Qihu, ZHAO Yuetang. Design method of steel fiber concrete shelter plate under contact detonation: Ⅱ [J]. Explosion and Shock Waves, 2002, 22(2): 163–168.
|
[9] |
Livermore Software Technology Corporation. LS-DYNA keyword user’s manual[M]. Version 971. Livermore, CA : Livermore Software Technology Corporation, 2012.
|
[10] |
TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack-include damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. DOI: 10.1016/0045-7825(86)90057-5.
|
[11] |
HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressure [C] // Proceedings of the fourteenth International Symposium on Ballistics. Quebec, Canada: ISIEMS, 1993: 591−600. DOI: 10.1115/1.4004326.
|
[12] |
RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500: numerical analysis using a new macroscopic concrete model for hydrocodes [C] // Proceedings of the Ninth International Symposiumon on Interaction of the Effects of Munitions with Structures. Berlin, Germany: ISIEMS, 1999: 315−322.
|
[13] |
BORRVALL T, RIEDEL W. The RHT concrete model in LS-DYNA [C] // Proceedings of the Eighth European LS-DYNA User Conference. Strasbourg, France: LSTC, 2011: 1−14.
|
[14] |
HECKÖTTER C, SIEVERS J. Simulation of impact tests with hard, soft and liquid filled missiles on reinforced concrete structures [J]. Journal of Applied Mechanics, 2013, 80(3): 1805.
|
[15] |
XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. DOI: 10.1016/j.ijimpeng.2016.01.003.
|
1. | 李建波,牛燕如,梅润雨,孙运轮. 飞机撞击安全壳中航油爆炸耦联分析模型及影响研究. 振动与冲击. 2023(10): 112-120+202 . ![]() | |
2. | 王振宁,尹建平,李旭东,伊建亚,张渝. 有限厚钢筋混凝土参数对破片侵彻性能的影响. 兵器装备工程学报. 2023(05): 180-185 . ![]() | |
3. | 程月华,周飞,吴昊. 抗战斗部侵彻爆炸作用的混凝土遮弹层设计. 爆炸与冲击. 2023(04): 113-130 . ![]() | |
4. | 刘志林,史文卿,蒋东,马爱娥. 基于混凝土拉伸损伤的侵彻混凝土数值模拟研究. 弹道学报. 2023(03): 55-60 . ![]() | |
5. | 王卓硕,赵太勇,杨宝良,景彤,蒋显松,陈智刚,周滔,王维占. 钨锆合金破片侵彻钢筋混凝土的数值模拟研究. 弹箭与制导学报. 2023(05): 45-53 . ![]() | |
6. | 王娟,赵均海,周媛,孙珊珊,吴赛. 高速长杆弹对有限直径金属厚靶的侵彻分析. 工程力学. 2022(04): 238-245 . ![]() | |
7. | 王猛,丁羽波. 弹体高速侵彻厚钢筋混凝土靶的数值模拟. 科学技术与工程. 2022(16): 6506-6514 . ![]() | |
8. | 程月华,姜鹏飞,吴昊,谭可可,方秦. 考虑尺寸效应的典型钻地弹侵彻混凝土深度分析. 爆炸与冲击. 2022(06): 85-99 . ![]() | |
9. | 黄谢平,孔祥振,陈祖煜,方秦. 冲击爆炸荷载作用下混凝土材料两类弹塑性损伤本构模型的对比分析. 土木工程学报. 2022(08): 35-45 . ![]() | |
10. | 任会兰,荣誉,许香照. 弹体贯穿混凝土数值模拟的改进材料模型. 爆炸与冲击. 2022(11): 79-91 . ![]() | |
11. | 侯俊超,王春光,邓德志,孙楠楠,戎鑫,刘洋,梁增友. 高速弹丸侵彻混凝土靶板等效厚度研究. 兵器装备工程学报. 2021(02): 9-14 . ![]() | |
12. | 刘锐,王健. 钻地弹侵彻发射井上盖毁伤研究. 兵器装备工程学报. 2021(04): 68-73 . ![]() | |
13. | 王娟,赵均海,张建华,周媛. 刚性弹侵彻有限直径金属厚靶的机理与模型研究. 工程力学. 2021(07): 239-247 . ![]() | |
14. | 吴飚,任辉启,陈力,杨建超,黄家蓉,高伟亮,金栋梁. 弹体侵彻混凝土尺度效应试验研究与理论分析. 防护工程. 2020(02): 1-10 . ![]() |