Volume 39 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
LIU Tianqi. Numerical simulation on characteristics of impinging air flow propagationand CO formation in lignite explosion[J]. Explosion And Shock Waves, 2019, 39(10): 105401. doi: 10.11883/bzycj-2018-0297
Citation: LIU Tianqi. Numerical simulation on characteristics of impinging air flow propagationand CO formation in lignite explosion[J]. Explosion And Shock Waves, 2019, 39(10): 105401. doi: 10.11883/bzycj-2018-0297

Numerical simulation on characteristics of impinging air flow propagationand CO formation in lignite explosion

doi: 10.11883/bzycj-2018-0297
  • Received Date: 2018-08-13
  • Rev Recd Date: 2018-11-02
  • Publish Date: 2019-10-01
  • In this paper we established a horizontal pipeline geometric model based on the horizontal pipeline coal dust explosion experimental device to study the characteristics of impinging airflow and CO gas generation during lignite explosion, and constructed the mathematical model of the coal-dust explosion dynamic propagation according to the 1∶1 ratio, with the characteristics of the airflow propagation and CO generation simulated. The results verified the reliability of the simulation by comparing the simulated and measured values of the lignite explosion flame propagation distance at different times. The spatial region is divided by the simulated velocity of the impinging airflow: z=0−0.10 m is the initial dusting zone, z=0.10−0.42 m is the impact airflow velocity jump zone, and z=0.42−0.98 m is the high velocity propagation zone of the impinging airflow. z=0.98−1.40 m is the impinging airflow buffer. The farther away from the centers of the z=0.20 m and z=0.40 m cross-sections, the greater the velocity of the impinging airflow, resulting from the " wall effect” of the fluid flow. The void ratio near the wall is larger than that in the inside of the fluid, and the resistance is weak when flowing. Therefore, the impinging airflow exhibits a relatively greater flow velocity near the wall. The simulation of the formation of CO gas products shows that z=0.30−0.60 m in the tube is the spatial range with the highest CO mass fraction, and the local maximum is 0.024%−0.026%. At z>0.70 m, the particles were subjected to the gravity, and the high-temperature gas generated by the explosion was subjected to the buoyancy, resulting in a tendency of the CO gas product to sink.
  • loading
  • [1]
    金龙哲.矿井粉尘防治理论[M]. 北京: 科学出版社, 2010: 33−35.
    [2]
    景国勋, 杨书召. 煤尘爆炸传播特性的实验研究 [J]. 煤炭学报, 2010, 35(4): 605–608. DOI: 10.13225/j.cnki.jccs.2010. 04.023.

    JING Guoxun, YANG Shuzhao. Experimental study on flame propagation characteristic of coal dust explosion [J]. Journal of China Coal Society, 2010, 35(4): 605–608. DOI: 10.13225/j.cnki.jccs.2010. 04.023.
    [3]
    毕明树.气体和粉尘爆炸防治工程学[M]. 北京: 化学工业出版社, 2012: 20−26.
    [4]
    ABBASI T, ABBASI S A. Dust explosion: cases, causes, consequences, and control [J]. Journal of Hazardous Materials, 2007, 140(1): 7–44.
    [5]
    ECKHOFF R K. Current status and expected future trends in dust explosion research [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(4): 225–237.
    [6]
    司荣军.矿井瓦斯煤尘爆炸传播规律研究[D]. 青岛: 山东科技大学, 2007: 25−37; 1−25.
    [7]
    ECKHOFF R K. Understanding dust explosions: the role of powder science and technology [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1): 105–116. DOI: 10.1016/j.jlp.2008.07.006.
    [8]
    ELAINE O. Structure and flame speed of dilute and dense layered coal-dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2015, 36(4): 214–222.
    [9]
    PAWEL K, ALEX H. An investigation of the consequences of primary dust explosions in interconnected vessels [J]. Journal of Hazardous Materials, 2006, 137(2): 752–761. DOI: 10.1016/j.jhazmat.2006.04.029.
    [10]
    蔡周全, 罗振敏, 程方明. 瓦斯煤尘爆炸传播特性的实验研究 [J]. 煤炭学报, 2009, 34(7): 938–941. DOI: 10.3321/j.issn:0253-9993.2009.07.015.

    CAI Zhouquan, LUO Zhenmin, CHENG Fangming. Experimental study on propagation characteristic of gas and coal dust explosion [J]. Journal of China Coal Society, 2009, 34(7): 938–941. DOI: 10.3321/j.issn:0253-9993.2009.07.015.
    [11]
    刘贞堂.瓦斯煤尘爆炸物证特性参数实验研究[D]. 北京: 中国矿业大学, 2010: 12-28.
    [12]
    刘义, 孙金华, 陈东梁. 甲烷-煤尘复合体系中煤尘爆炸下限的实验研究 [J]. 安全与环境学报, 2007, 7(4): 129–131. DOI: 10.3969/j.issn.1009-6094.2007.04.033.

    LIU Yi, SUN Jinhua, CHEN Dongliang. Experimental study on the lower limit of coal dust explosion in methane-coal dust composite system [J]. Journal of Safety and Environment, 2007, 7(4): 129–131. DOI: 10.3969/j.issn.1009-6094.2007.04.033.
    [13]
    曹卫国, 徐森, 梁济元. 煤粉爆炸过程中火焰的传播特性 [J]. 爆炸与冲击, 2014, 34(5): 586–593. DOI: 10.11883/1001-1455(2014)05-0586-08.

    CAO Weiguo, XU Sen, LIANG Jiyuan. Flame propagation characteristic of coal dust explosion [J]. Explosion and Shock Waves, 2014, 34(5): 586–593. DOI: 10.11883/1001-1455(2014)05-0586-08.
    [14]
    程磊. 受限空间煤尘爆炸冲击波传播衰减规律研究[D]. 焦作: 河南理工大学, 2011: 41−49.
    [15]
    周力行. 湍流两相流动与燃烧的数值模拟[M]. 北京: 清华大学出版社, 1991: 19−38.
    [16]
    FAUNDEZ J, ARENILLAS A, RUBIERA F. Ignition behavior of different rank coals in an entrained flow reactor [J]. Fuel, 2005, 84(17): 2172–2177. DOI: 10.1016/j.fuel.2005.03.028.
    [17]
    刘建, 姚海飞, 金龙哲. 基于罗森-拉姆勒分布函数的粉尘分散度分析 [J]. 北京科技大学学报, 2010, 32(9): 1101–1106. DOI: 10.13374/j.issn1001-053x.2010.09.001.

    LIU Jian, YAO Haifei, JIN Longzhe. Dust dispersion analysis based on Rosen-Rammler distribution function [J]. Journal of Beijing University of Science and Technology, 2010, 32(9): 1101–1106. DOI: 10.13374/j.issn1001-053x.2010.09.001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (5164) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return