Volume 39 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
LIU Yu, XU Zejian, TANG Zhongbin, ZHANG Weiqi, HUANG Fenglei. A high-strain-rate shear testing method based on the DIHPB technique[J]. Explosion And Shock Waves, 2019, 39(10): 104101. doi: 10.11883/bzycj-2018-0301
Citation: LIU Yu, XU Zejian, TANG Zhongbin, ZHANG Weiqi, HUANG Fenglei. A high-strain-rate shear testing method based on the DIHPB technique[J]. Explosion And Shock Waves, 2019, 39(10): 104101. doi: 10.11883/bzycj-2018-0301

A high-strain-rate shear testing method based on the DIHPB technique

doi: 10.11883/bzycj-2018-0301
  • Received Date: 2018-08-15
  • Rev Recd Date: 2018-12-20
  • Available Online: 2019-09-25
  • Publish Date: 2019-10-01
  • Compared to the split Hopkinson pressure bar (SHPB) technique, the direct impact Hopkinson pressure bar (DIHPB) method can usually obtain a higher strain rate in dynamic tests of material properties. Based on the DIHPB system, a new double shear specimen was used to measure the shear stress-shear strain curves of 603 steel at strain rates ranging from 1 500 s−1 to 33 000 s−1. Through comparison with the testing results achieved in a SHPB system, it is found that the flow stresses determined by the two methods have a good consistency, but a difference exists in the rising parts of the flow stress curves. Numerical simulation was carried out to validate the DIHPB method, and the proper testing condition of this method was analyzed. With this method, it was observed that the flow stress of 603 steel showed an obvious strain rate effect. At higher loading speeds, however, the failure stress of the material presented a decreasing tendency with the increase of the loading speed.
  • loading
  • [1]
    LIAO S C, DUFFY J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(11): 2201–2231. DOI: 10.1016/S0022-5096(98)00044-1.
    [2]
    RITTEL D, WANG Z G. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti-6Al-4V alloys [J]. Mechanics of Materials, 2008, 40(8): 629–635. DOI: 10.1016/j.mechmat.2008.03.002.
    [3]
    PEIRS J, VERLEYSEN P, DEGRIECK J, et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V [J]. International Journal of Impact Engineering, 2010, 37(6): 703–714. DOI: 10.1016/j.ijimpeng.2009.08.002.
    [4]
    BAKER W E, YEW C H. Strain-rate effects in the propagation of torsional plastic waves [J]. Journal of Applied Mechanics, 1966, 33(4): 917–923. DOI: 10.1115/1.3625202.
    [5]
    BAI Y L, XUE Q, Xu Y, SHEN L. Characteristics and microstructure in the evolution of shear localization in Ti-6Al-4V [J]. Mechanics of Materials, 1994, 17(2/3): 155–64. DOI: 10.1016/0167-6636(94)90056-6.
    [6]
    DUFFY J, CAMPBELL J D, HAWLEY R H. On the use of a torsional split Hopkinson bar to study rate effects in 1100-0 aluminum [J]. Journal of Applied Mechanics, 1971, 38(1): 83–91. DOI: 10.1115/1.3408771.
    [7]
    CAMPBELL J D, ELEICHE A M, TSAO M C C. Strength of metals and alloys at high strains and strain rates [C] // JAFFEE R I, WILCOX B A. Fundamental Aspects of Structural Alloy Design. Boston, MA: Springer, 1977: 545−563. DOI: 110.1007/978-1-4684-2421-8_19.
    [8]
    HARTMANN K H, KUNZE H D, MEYER L W. Metallurgical effects on impact loaded materials [C] // MEYERS M A, MURR L E. Shock Waves and High-Strain-Rate Phenomena in Metals. Boston, MA: Springer, 1981: 325−337. DOI: 10.1007/978-1-4613-3219-0_21.
    [9]
    MINNAAR K, ZHOU M. An analysis of the dynamic shear failure resistance of structural metals [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(10): 2155–2170. DOI: 10.1016/S0022-5096(98)00020-9.
    [10]
    PURSCHE F, MEYER L W. Correlation between dynamic material behavior and adiabatic shear phenomenon for quenched and tempered steels [J]. Engineering Transactions, 2011, 59(2): 67–84.
    [11]
    MURR L E, STAUDHAMMER K P, MEYERS M A. Metallurgical applications of shock-wave and high-strain-rate phenomena[M]. New York: Marcel Dekker, 1986.
    [12]
    MEYER L W, PURSCHE F. Experimental methods [C] // DODD B, BAI Y. Adiabatic Shear Localization: Frontiers and Advances. London: Elsevier, 2012.
    [13]
    RUSINEK A, KLEPACZKO J R. Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress [J]. International Journal of Plasticity, 2001, 17(1): 87–115. DOI: 10.1016/S0749-6419(00)00020-6.
    [14]
    RITTEL D, LEE S, RAVICHANDRAN G. A shear-compression specimen for large strain testing [J]. Experiment Mechanics, 2002, 42(1): 58–64. DOI: 10.1007/BF02411052.
    [15]
    GUO Y, LI Y. A novel approach to testing the dynamic shear response of Ti-6Al-4V [J]. Acta Mechanica Solida Sinica, 2012, 25(3): 299–311. DOI: 10.1016/S0894-9166(12)60027-5.
    [16]
    许泽建, 丁晓燕, 张炜琪, 等. 一种用于材料高应变率剪切性能测试的新型加载技术 [J]. 力学学报, 2016, 48(3): 654–659. DOI: 10.6052/0459-1879-15-445.

    XU Zejian, DING Xiaoyan, ZHANG Weiqi, et al. A new loading technique for measuring shearing properties of materials under high strain rates [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 654–659. DOI: 10.6052/0459-1879-15-445.
    [17]
    XU Zejian. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique [J]. International Journal of Impact Engineering, 2017, 101: 90–104. DOI: 10.1016/j.ijimpeng.2016.11.012.
    [18]
    XU Zejian. On shear failure behaviors of an armor steel over a large range of strain rates [J]. International Journal of Impact Engineering, 2018, 118: 24–28. DOI: 10.1016/j.ijimpeng.2018.04.003.
    [19]
    张炜琪, 许泽建, 孙中岳, 等. Ti-6Al-4V在高应变率下的动态剪切特性及失效机理 [J]. 爆炸与冲击, 2018, 38(5): 1137–1144. DOI: 10.11883/bzycj-2017-0107.

    ZHANG Weiqi, XU Zejian, SUN Zhongyue, et al. Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates [J]. Explosion and Shock Waves, 2018, 38(5): 1137–1144. DOI: 10.11883/bzycj-2017-0107.
    [20]
    GORHAM D A. Measurement of stress-strain properties of strong metals at very high strainrates [C] // HARDING J. Mechanical properites at high rates of strain.1979: 16−24.
    [21]
    DHARAN C K H, HAUSER F E. Determination of stress-strain characteristics at very high strain rates [J]. Experimental Mechanics, 1970, 10(9): 370–376. DOI: 10.1007/BF02320419.
    [22]
    ZHAO Han. A study on testing techniques for concrete-like materials under compressive impact loading [J]. Cement and Concrete Composites, 1998, 20(4): 293–299. DOI: 10.1016/S0958-9465(98)00008-0.
    [23]
    陶俊林, 陈裕泽, 陈刚, 等.直接撞击Hopkinson压杆系统数值模拟[J].固体力学学报, 2003, 24(S): 198−203.

    TAO Junlin, CHEN Yuze, CHEN Gan, et al. Numerical simulation of direct impact Hopkinson pressure bar system[J]. Acta Mechanica Solida Sinica, 2003, 24(S): 198−203.
    [24]
    陶俊林. 直接撞击Hopkinson实验技术讨论 [C] // 中国科学技术大学冲击动力学实验室.第三届全国爆炸力学实验技术交流会论文集. 2004: 11−23.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (5075) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return