Experimental studies on characteristics of explosion pressure loadin cylinder apparatus[J]. Explosion And Shock Waves, 2019, 39(10): 102202. doi: 10.11883/bzycj-2018-0327
Citation:
Experimental studies on characteristics of explosion pressure loadin cylinder apparatus[J]. Explosion And Shock Waves , 2019, 39(10): 102202. doi: 10.11883/bzycj-2018-0327
Experimental studies on characteristics of explosion pressure loadin cylinder apparatus[J]. Explosion And Shock Waves, 2019, 39(10): 102202. doi: 10.11883/bzycj-2018-0327
Citation:
Experimental studies on characteristics of explosion pressure loadin cylinder apparatus[J]. Explosion And Shock Waves , 2019, 39(10): 102202. doi: 10.11883/bzycj-2018-0327
Experimental studies on characteristics of explosion pressure loadin cylinder apparatus
Received Date: 2018-08-31
Rev Recd Date:
2019-02-17
Publish Date:
2019-10-24
Abstract
In order to study explosion pressure load distribution characteristics in closed environment, a TNT charge internal explosion experiment of cylinder apparatus with an aspect ratio of 2∶1 was carried out. Pressure load data of the cylinder wall and cover plate were obtained, and the pressure load characteristics and distribution laws of the wall and cover plate were analyzed combining the simulation results. The model of peak pressure load was established and validated. The results show that the pressure load waveforms of the cylinder wall and cover plate are not exactly identical, and the cylinder wall pressure load changes from obvious single wave peak to multiple peak values as the distance to explosion center increasing. The attenuation characteristics of pressure load in the near-field area were similar to that of a free ground blast wave with certain explosion height. The pressure load of the cover plate shows a characteristic of multiple wave peaks, of which, the maximum peak of the pressure load in the central area is 3 times larger than the first peak value, and the corner part is 6 times larger than the first peak value. The maximum peak of the pressure load on the cylinder wall shows a concave distribution. The results of this study can provide reference for the analysis of the internal explosion pressure load and evaluation of the structure damage.
References
Relative Articles
[1] ZHENG Kai, REN Jiale, SONG Chen, JIA Qianhang, XING Zhixiang. Experimental study on influences of copper foam on explosive characteristics of syngas in a closed pipe [J]. Explosion And Shock Waves, 2024, 44(1): 012102. doi: 10.11883/bzycj-2023-0036
[2] KONG Xiangshao, WANG Zitang, KUANG Zheng, ZHOU Hu, ZHENG Cheng, WU Weiguo. Experimental study on the mitigation effects of confined-blast loading [J]. Explosion And Shock Waves, 2021, 41(6): 062901. doi: 10.11883/bzycj-2020-0193
[3] LIU Tianqi, LI Yucheng, LUO Hongbo. Experimental study on explosion pressure variation law of coal dust with different degrees of metamorphism [J]. Explosion And Shock Waves, 2019, 39(9): 095403. doi: 10.11883/bzycj-2018-0265
[4] WEN Lijing, ZHANG Chunming, GUO Chao, DUAN Pu, ZHANG Liansheng, DUAN Zhuoping. Impact load characteristics of aircraft model impacting steel-reinforced concrete [J]. Explosion And Shock Waves, 2018, 38(4): 811-819. doi: 10.11883/bzycj-2016-0337
[5] ZHANG Yulei, SU Jianjun, LI Zhirong, JIANG Haiyan, ZHONG Kai, WANG Shengqiang. Quasi-static pressure characteristic of TNT's internal explosion [J]. Explosion And Shock Waves, 2018, 38(6): 1429-1434. doi: 10.11883/bzycj-2017-0170
[6] Gao Na, Zhang Yansong, Hu Yiting. Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures [J]. Explosion And Shock Waves, 2017, 37(3): 453-458. doi: 10.11883/1001-1455(2017)03-0453-06
[7] Wu Linjie, Hou Hailiang, Zhu Xi, Chen Pengyu, Tian Wanping. Internal load characteristics of broadside cabin of defensive structure subjected to underwater contact explosion [J]. Explosion And Shock Waves, 2017, 37(4): 719-726. doi: 10.11883/1001-1455(2017)04-0719-08
[8] Gao Na, Zhang Yansong, Hu Yiting. Experimental study on gas explosion hazard under different temperatures and pressures [J]. Explosion And Shock Waves, 2016, 36(2): 218-223. doi: 10.11883/1001-1455(2016)02-0218-06
[9] Xue Bing, Ma Hong-hao, Shen Zhao-wu, Yu Yong. Dynamic calibration of pressure sensors by small-scale explosive experiments in an explosion containment vessel [J]. Explosion And Shock Waves, 2015, 35(3): 437-441. doi: 10.11883/1001-1455(2015)03-0437-05
[10] GAO Hong-quan, LU Fang-yun, WANG Shao-long, YAN Peng, LUO Yong-feng, YUAN Wei, HU Jian. Adamage-powerevaluationmethodoftheexplosive-involveddevice
inaconfinedcontainerstoringliquid [J]. Explosion And Shock Waves, 2011, 31(3): 306-310. doi: 10.11883/1001-1455(2011)03-0306-05
[11] WANG Zhi-rong, JIANG Jun-cheng, ZHOU Chao. Experimentalinvestigationofgasexplosioncharacteristicinlinkedvessels [J]. Explosion And Shock Waves, 2011, 31(1): 69-74. doi: 10.11883/1001-1455(2011)01-0069-06
Cited by Periodical cited type(7) 1. 蒋欣利,张国凯,何勇,姚箭,王振,吴玉欣,刘举,王明洋. 密闭建筑温压炸药内爆炸后燃效应. 兵工学报. 2024(08): 2520-2530 . 2. 从鹏松,张国锋,郭洁,李景丽,朱晓芬,陈四甫. 电缆接头防护材料的性能测试及应用研究. 合成纤维. 2023(05): 76-79+84 . 3. 王良全,孔德仁. 地形环境对冲击波传播规律影响研究综述. 国外电子测量技术. 2022(05): 68-75 . 4. 郑星,黄海莹,毛勇建,张军,周东. 基于高速纹影技术的爆炸冲击波图像测量研究. 光学精密工程. 2022(18): 2187-2194 . 5. 孔祥韶,王子棠,况正,周沪,郑成,吴卫国. 密闭空间内爆炸载荷抑制效应实验研究. 爆炸与冲击. 2021(06): 24-37 . 本站查看 6. 王仲,何皓弘,周冬冬,赵莉华. 基于流固耦合的电缆中间接头防爆盒抗爆能力模拟研究. 消防科学与技术. 2021(12): 1732-1738 . 7. 李彦超,徐鹏,蔡宣明,李海涛,秦国华. 爆炸载荷作用下含预制损伤膜片力学响应特性. 兵器装备工程学报. 2020(12): 149-154+176 .
Other cited types(2)
Proportional views