Volume 39 Issue 4
Mar.  2019
Turn off MathJax
Article Contents
CHEN Zibo, XIE Puchu, LIU Dongsheng, CHEN Wei, WANG Yonggang. Quasi-isentropic compression technique based on generalized wave impedance gradient flyer[J]. Explosion And Shock Waves, 2019, 39(4): 041406. doi: 10.11883/bzycj-2018-0407
Citation: CHEN Zibo, XIE Puchu, LIU Dongsheng, CHEN Wei, WANG Yonggang. Quasi-isentropic compression technique based on generalized wave impedance gradient flyer[J]. Explosion And Shock Waves, 2019, 39(4): 041406. doi: 10.11883/bzycj-2018-0407

Quasi-isentropic compression technique based on generalized wave impedance gradient flyer

doi: 10.11883/bzycj-2018-0407
  • Received Date: 2018-10-19
  • Rev Recd Date: 2018-12-27
  • Available Online: 2019-04-25
  • Publish Date: 2019-04-01
  • Based on the wave propagation characteristics of variable cross-section rods, a generalized wave impedance gradient flyer, termed the " bed of nails” was designed. The process of the generalized wave impedance gradient flyer impacting the sample was simulated by using the SPH algorithm of the LS-DYNA software. The wave profiles display a smooth increase of  velocity, with no indication of a shock jump. The physical mechanism of the quasi-isentropic compression generation is attributed to the interaction from a series of approximately spherical waves with slowly rising front. The influences of impact velocity and geometric parameters of the flyer on the ramp wave loading characteristics were discussed in detail, which provide some useful information  for the design and application of the generalized wave impedance gradient flyer. Selective Laser Melting, and an additive manufacture technique, were used to manufacture  the " bed of nails” flyer. The experiments were performed at the impact velocities of 348 m/s using the 57 mm gas gun. The measured free surface velocity profile agrees well with the simulation results.

  • loading
  • [1]
    LORENZ K T, EDWARDS M J, JANKOWSKI A F, et al. High pressure, quasi-isentropic compression experiments on the Omega laser [J]. High Energy Density Physics, 2006, 2(3): 113–125. DOI: 10.1016/j.hedp.2006.08.001.
    [2]
    CHHABILADS L C, KMETYK L N, REINHART W D, et al. Enhanced hypervelocity launcher-capabilities to 16 km/s [J]. International Journal of Impact Engineering, 1995, 17(1−3): 183–194. DOI: 10.1016/0734-743X(95)99845-I.
    [3]
    THORNHILL T F, CHHABILDAS L C, REINHART W D, et al. Particle launch 19km/s for micro-meteoroid simulation using enhance three-stage light gas gun hypervelocity launcher techniques [J]. International Journal of Impact Engineering, 2006, 33(1−12): 799–811. DOI: 10.1016/j.ijimpeng.2006.09.015.
    [4]
    MARTIN L P, PATTERSON J R, ORLIKOWSKI D, et al. Application of tape-cast graded impedance impactors for light-gas gun experiments [J]. Journal of Applied Physics, 2007, 102(2): 023507. DOI: 10.1063/1.2756058.
    [5]
    YEP S J, BELOF J L, ORLIKOWSKI D A, et al. Fabrication and application of high impedance graded density impactors in light gas gun experiments [J]. Review of Scientific Instruments, 2013, 84(10): 103909. DOI: 10.1063/1.4826565.
    [6]
    柏劲松, 李蕾. 实现应变率为105~106 s−1的阻抗梯度飞片复杂加载波形计算分析 [J]. 爆炸与冲击, 2015, 35(6): 792–798. DOI: 10.11883/1001-1455(2015)06-0792-07

    BAI Jinsong, LI Lei. Computational analysis of complex loading waveforms of impedance gradient flyers with strain rate of 105—106 s−1 [J]. Explosion and Shock Waves, 2015, 35(6): 792–798. DOI: 10.11883/1001-1455(2015)06-0792-07
    [7]
    沈强, 张联盟, 王传彬, 等. 梯度飞片材料的波阻抗分布设计与优化 [J]. 物理学报, 2003, 52(7): 1663–1667. DOI: 10.3321/j.issn:1000-3290.2003.07.020

    SHEN Qiang, ZHANG Lianmeng, WANG Chuanbin, et al. Design and optimization of wave impedance distribution of gradient flyer materials [J]. Acta Physica Sinica, 2003, 52(7): 1663–1667. DOI: 10.3321/j.issn:1000-3290.2003.07.020
    [8]
    LUO G Q, BAI J S, TAN H, et al. Characterizations of Mg-W system graded-density impactors for complex loading experiments [J]. Metallurgical and Materials Transactions A, 2010, 41(9): 2389–2395. DOI: 10.1007/s11661-010-0309-0.
    [9]
    TAYLOR P, Goff M, HAZELL P J, et al. Ramp wave generation using graded areal density ceramic flyers and the plate impact technique [J]. Journal of Physics: Conference Series, 2014, 500: 142016. DOI: 10.1088/1742-6596/50/14/142016.
    [10]
    卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机械制造与自动化, 2013, 42(4): 1–4. DOI: 10.19344/j.cnki.issn1671-5276.2013.04.001

    LU Bingheng, LI Dichen. Development of Additive Manufacturing (3D Printing) Technology [J]. Mechanical Manufacturing and Automation, 2013, 42(4): 1–4. DOI: 10.19344/j.cnki.issn1671-5276.2013.04.001
    [11]
    张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术 [J]. 材料工程, 2016, 44(2): 122–128. DOI: 10.11868/j.issn.1001-4381.2016.02.019

    ZHANG Xuejun, TANG Sizhen, YAN Hengyue, et al. Research status and key technologies of 3D printing technology [J]. Materials Engineering, 2016, 44(2): 122–128. DOI: 10.11868/j.issn.1001-4381.2016.02.019
    [12]
    王礼立, 胡时胜. 锥杆中应力波传播的放大特性 [J]. 宁波大学学报, 1988, 2(1): 78–87

    WANG Lili, HU Shisheng. Amplification characteristics of stress wave propagation in cones [J]. Journal of Ningbo University, 1988, 2(1): 78–87
    [13]
    罗鑫, 白二雷. 变截面杆共轴撞击数值分析及其应用前景 [J]. 高压物理学报, 2012, 26(6): 715–720. DOI: 10.11858/gywlxb.2012.06.018

    LUO Xin, BAI Erlei. Numerical analysis of the common-axis impact of variable-section bar and its application prospect [J]. Journal of High Pressure Physics, 2012, 26(6): 715–720. DOI: 10.11858/gywlxb.2012.06.018
    [14]
    陶俊林, 张方举. 变截面弹丸在分离式Hopkinson压杆中的应用 [J]. 实验力学, 2003, 18(1): 137–140. DOI: 10.3969/j.issn.1001-4888.2003.01.025

    TAO Junlin, ZHANG Fangju. Application of variable section projectile in separate Hopkinson pressure bar [J]. Experimental Mechanics, 2003, 18(1): 137–140. DOI: 10.3969/j.issn.1001-4888.2003.01.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (4911) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return