Volume 39 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
ZHANG Pinliang, SONG Guangming, GONG Zizheng, TIAN Dongbo, WU Qiang, CAO Yan, LI Yu, LI Ming. Shielding performances of a Whipple shield enhanced by Al/Mg impedance-graded materials[J]. Explosion And Shock Waves, 2019, 39(12): 125101. doi: 10.11883/bzycj-2018-0461
Citation: ZHANG Pinliang, SONG Guangming, GONG Zizheng, TIAN Dongbo, WU Qiang, CAO Yan, LI Yu, LI Ming. Shielding performances of a Whipple shield enhanced by Al/Mg impedance-graded materials[J]. Explosion And Shock Waves, 2019, 39(12): 125101. doi: 10.11883/bzycj-2018-0461

Shielding performances of a Whipple shield enhanced by Al/Mg impedance-graded materials

doi: 10.11883/bzycj-2018-0461
  • Received Date: 2018-11-14
  • Rev Recd Date: 2019-01-13
  • Publish Date: 2019-12-01
  • It is believed that the gradient material bumper shows some positive for shielding performance of Whipple shield. The purpose of this paper is to study the hypervelocity impact characteristic of an new Al/Mg impedance-graded materials (area density is equivalent to 1.5 mm thick aluminum alloy) enhanced Whipple shield at 5.0 km/s, and to investigate the main factors in performance improvement, except higher shock pressures and temperature rise in the projectiles caused by the high-acoustic-impedance coating of bumpers. The hypervelocity impact performances of a shield enhanced by Al/Mg impedance-graded materials and an aluminum Whipple shield are investigated experimentally, using a two-stage light gas gun at velocities of 5.0 km/s. The characteristics of perforation on bumper, debris clouds and damage patterns on the rear wall have been studied. The characteristics of the shielding performance produced by Al/Mg shields include four major features: petal-shaped curling in bumper, slight damage of the rear wall, wider expanded area of debris cloud and smaller impact craters. Some theoretical analysis and calculations are performed. Coupling process of shock energy and thermodynamic states are calculated, and wave propagation in the projectile and bumper is discussed. It is found that the shockwave propagation is affected by the shock impedance mismatch in various area density impedance-graded materials bumpers, it can break the projectile into smaller parts and increase the internal energy conversion in the bumpers. It plays an important role in contributing to kinetic energy attenuation. Thus, the preliminary results show that the shielding capability of an Al/Mg shield is greater than that of an aluminum Whipple shield where the bumper has the same areal density.
  • loading
  • [1]
    WHIPPLE F L. Meteorites and space travel [J]. Astronomical Journal, 1947, 52(5): 131–131. DOI: 10.1086/106009.
    [2]
    SCHMIDT R M, HOUSEN K R, BJORKMAN M D, et al. Advanced all-metal orbital debris shield performance at 7 to 17 km/s [J]. International Journal of Impact Engineering, 1995, 17(4/5/6): 719–730.
    [3]
    RAMADHAN A A, ABU TALIB A R, MOHD RAFIE A S, et al. High velocity impact response of Kevlar-29/epoxy and 6061-T6 aluminum laminated panels [J]. Materials and Design, 2013, 43: 307–321. DOI: 10.1016/j.matdes.2012.06.034.
    [4]
    CHRISTIANSEN E L, CREWS J L, WILLIAMSEN J E, et al. Enhanced meteoroid and orbital debris shielding [J]. International Journal of Impact Engineering, 1995, 17(1/2/3): 217–228. DOI: 10.1016/0734-743x(95)99848-l.
    [5]
    COUR-PALAIS B G. Hypervelocity impact in metals, glass and composites [J]. International Journal of Impact Engineering, 1987, 5(1/2/3/4): 221–237. DOI: 10.1016/0734-743x(87)90040-6.
    [6]
    HUANG X, LING Z, LIU Z D, et al. Amorphous alloy reinforced Whipple shield structure [J]. International Journal of Impact Engineering, 2012, 42: 1–10. DOI: 10.1016/j.ijimpeng.2011.11.001.
    [7]
    NAHME H, STILP A J, WEBER K. Shock wave reflection behavior in double-layer meteoroid bumper systems [J]. AIP Conference Proceedings, 1997, 429(1): 941–944.
    [8]
    侯明强, 龚自正, 徐坤博, 等. 密度梯度薄板超高速撞击特性的实验研究 [J]. 物理学报, 2014, 63(2): 024701. DOI: 10.7498/aps.63.024701.

    HOU Mingqiang, GONG Zizheng, XU Kunbo, et al. Experimental study on hypervelo city impact characteristics of density-grade thin-plate [J]. Acta Physica Sinica, 2014, 63(2): 024701. DOI: 10.7498/aps.63.024701.
    [9]
    ZHANG P L, GONG Z Z, TIAN D B, et al. Comparison of shielding performance of Al/Mg impedance-graded-material-enhanced and aluminum Whipple shields [J]. International Journal of Impact Engineering, 2019, 126: 101–108. DOI: 10.1016/j.ijimpeng.2018.12.007.
    [10]
    HUI D, DUTTA P K. A new concept of shock mitigation by impedance-graded materials [J]. Composites Part B: Engineering, 2011, 42(8): 2181–2184. DOI: 10.1016/j.compositesb.2011.05.016.
    [11]
    LONG L P, LIU W S, MA Y Z, et al. Microstructure and diffusion behaviors of the diffusion bonded Mg/Al joint [J]. High Temperature Materials and Processes, 2017, 36(9): 897–903. DOI: 10.1515/htmp-2016-0023.
    [12]
    PIEKUTOWSKI A J. Fromation and description of debris clouds producted by hypervelocity impact: NAS8-38856 [R]. USA: NASA, 1996.
    [13]
    PIEKUTOWSKI A J, POORMON K L, CHRISTIANSEN E L, et al. Performance of Whipple shields at impact velocities above 9 km/s [J]. International Journal of Impact Engineering, 2011, 38(6): 495–503. DOI: 10.1016/j.ijimpeng.2010.10.021.
    [14]
    PIEKUTOWSKI A J, POORMON K L. Impact of thin aluminum sheets with aluminum spheres up to 9 km/s [J]. International Journal of Impact Engineering, 2008, 35: 1716–1722. DOI: 10.1016/j.ijimpeng.2008.07.023.
    [15]
    GRADY D E, KIPP M E. Experimental measurement of dynamic failure and fragmentation properties of metals [J]. International Journal of Solids and Structures, 1995, 32(17/18): 2779–2791. DOI: 10.1016/0020-7683(94)00297-a.
    [16]
    MEYERS M A. 材料的动力学行为[M]. 张庆明, 译. 北京: 国防工业出版社, 2006: 83.
    [17]
    CHRISTIANSEN E L. Meteoroid/debris shielding: NASA TP-2003-210788 [R]. 2003.
    [18]
    ANDERSON C E Jr, TRUCANO T G, MULLIN S A. Debris cloud dynamics [J]. International Journal of Impact Engineering, 1990, 9(1): 89–113. DOI: 10.1016/0734-743X(90)90024-P.
    [19]
    URTIEW P A, GROVER R. The melting temperature of magnesium under shock loading [J]. Journal of Applied Physics, 1977, 48(3): 1122–1126. DOI: 10.1063/1.323789.
    [20]
    ANG J A. Impact flash jet initiation phenomenology [J]. International Journal of Impact Engineering, 1990, 10(1/2/3/4): 23–33. DOI: 10.1016/0734-743x(90)90046-x.
    [21]
    KIPP M E, GRADY D E, SWEGLE J W. Numerical and experimental studies of high-velocity impact fragmentation [J]. International Journal of Impact Engineering, 1993, 14(1/2/3/4): 427–438. DOI: 10.1016/0734-743x(93)90040-e.
    [22]
    谭华. 实验冲击波物理导引[M]. 北京: 国防工业出版社, 2007.
    [23]
    经福谦. 实验物态方程导引[M]. 2版. 北京: 科学出版社, 1999.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (4737) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return