Volume 40 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
LI Yanchao, BI Mingshu, GAO Wei. Explosion pressure prediction considering the flame instabilities[J]. Explosion And Shock Waves, 2020, 40(1): 012101. doi: 10.11883/bzycj-2019-0004
Citation: LI Yanchao, BI Mingshu, GAO Wei. Explosion pressure prediction considering the flame instabilities[J]. Explosion And Shock Waves, 2020, 40(1): 012101. doi: 10.11883/bzycj-2019-0004

Explosion pressure prediction considering the flame instabilities

doi: 10.11883/bzycj-2019-0004
  • Received Date: 2019-01-04
  • Rev Recd Date: 2019-02-21
  • Available Online: 2020-01-25
  • Publish Date: 2020-01-01
  • This paper is aimed at revealing the couplings of flame instabilities and explosion pressure. By introducing flame wrinkling factor into the smooth flame model, the wrinkled flame model and turbulent flame model are developed to predict explosion pressure evolution. The effects of adiabatic and isothermal compression on explosion pressure prediction are also compared. The results demonstrate that the expanding flame tends to be more unstable under enhancing hydrodynamic instability and the cellular flame will be formed in the constant-volume stage. Since the smooth flame neglects the flame instabilities, the predicted explosion pressure is lower than experimental value. For the smooth flame model, the predicted pressure in the adiabatic condition is higher than that in the isothermal condition. The explosion pressure behavior could be overpredicted significantly using the turbulent flame model due to the fact that the turbulent flame model overestimates the flame wrinkling level. When the wrinkled flame model is considered, the explosion pressure behavior could be reproduced relatively satisfactorily for stoichiometric propane-air mixture and stoichiometric methane-air mixture in V=25.6 m3. When V≤1.25 m3, the experimental explosion pressure is lied within the predicted value using wrinkled flame model and adiabatic smooth flame model.
  • loading
  • [1]
    KWON O C, ROZENCHAN G, LAW C K. Cellular instabilities and self-acceleration of outwardly propagating spherical flames [J]. Proceedings of the Combustion Institute, 2002, 29(2): 1775–1783. DOI: 10.1016/S1540-7489(02)80215-2.
    [2]
    WU F J, JOMAAS G, LAW C K. An experimental investigation on self-acceleration of cellular spherical flames [J]. Proceedings of the Combustion Institute, 2013, 34(1): 937–945. DOI: 10.1016/j.proci.2012.05.068.
    [3]
    NISHIMURA I, MOGI T, DOBASHI R. Simple method for predicting pressure behavior during gas explosions in confined spaces considering flame instabilities [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 351–354. DOI: 10.1016/j.jlp.2011.08.009.
    [4]
    DAHOE A E, ZEVENBERGEN J F, LEMKOWITZ S M, et al. Dust explosions in spherical vessels: the role of flame thickness in the validity of the ‘cube-root law’ [J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1): 33–44. DOI: 10.1016/0950-4230(95)00054-2.
    [5]
    BRADLEY D, MITCHESON A. Mathematical solutions for explosions in spherical vessels [J]. Combustion and Flame, 1976, 26: 201–217. DOI: 10.1016/0010-2180(76)90072-9.
    [6]
    LAUTKASKI R. Pressure rise in confined gas explosions [DB/OL]. (2005-12-30). https://www.vtt.fi/inf/julkaisut/muut/2005/PRO1_P1026_05.pdf.
    [7]
    KUZNETSOV M, KOBELT S, GRUNE J, et al. Flammability limits and laminar flame speed of hydrogen-air mixtures at sub-atmospheric pressures [J]. International Journal of Hydrogen Energy, 2012, 37(22): 17580–17588. DOI: 10.1016/j.ijhydene.2012.05.049.
    [8]
    JIANG Y H, LI G X, LI F S, et al. Experimental investigation of correlation between cellular structure of the flame front and pressure [J]. Fuel, 2017, 199: 65–75. DOI: 10.1016/j.fuel.2017.02.036.
    [9]
    LI Y C, BI M S, ZHANG S L, et al. Dynamic couplings of hydrogen/air flame morphology and explosion pressure evolution in the spherical chamber [J]. International Journal of Hydrogen Energy, 2018, 43(4): 2503–2513. DOI: 10.1016/j.ijhydene.2017.12.044.
    [10]
    LI Y C, BI M S, LI B, et al. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels [J]. Fuel, 2018, 233: 269–282. DOI: 10.1016/j.fuel.2018.06.042.
    [11]
    LI H M, LI G X, SUN Z, et al. Experimental investigation on laminar burning velocities and flame intrinsic instabilities of lean and stoichiometric H2/CO/air mixtures at reduced, normal and elevated pressures [J]. Fuel, 2014, 135: 279–291. DOI: 10.1016/j.fuel.2014.06.074.
    [12]
    KIM W K, MOGI T, KUWANA K, et al. Self-similar propagation of expanding spherical flames in large scale gas explosions [J]. Proceedings of the Combustion Institute, 2015, 35(2): 2051–2058. DOI: 10.1016/j.proci.2014.08.023.
    [13]
    SUN Z Y, LIU F S, BAO X C, et al. Research on cellular instabilities in outwardly propagating spherical hydrogen-air flames [J]. International Journal of Hydrogen Energy, 2012, 37(9): 7889–7899. DOI: 10.1016/j.ijhydene.2012.02.011.
    [14]
    KATSUMI T, AIDA T, AIBA K, et al. Outward propagation velocity and acceleration characteristics in hydrogen-air deflagration [J]. International Journal of Hydrogen Energy, 2017, 42(11): 7360–7365. DOI: 10.1016/j.ijhydene.2016.06.165.
    [15]
    LI Y C, BI M S, GAO W. Theoretical pressure prediction of confined hydrogen explosion considering flame instabilities [J]. Journal of Loss Prevention in the Process Industries, 2019, 57: 320–326. DOI: 10.1016/j.jlp.2019.01.001.
    [16]
    GU X J, HAQ M Z, LAWES M, et al. Laminar burning velocity and Markstein lengths of methane-air mixtures [J]. Combustion and Flame, 2000, 121(1−2): 41–58. DOI: 10.1016/S0010-2180(99)00142-X.
    [17]
    METGHALCHI M, KECK J C. Laminar burning velocity of propane-air mixtures at high temperature and pressure [J]. Combustion and Flame, 1980, 38: 143–154. DOI: 10.1016/0010-2180(80)90046-2.
    [18]
    CASHDOLLAR K L, ZLOCHOWER I A, GREEN G M, et al. Flammability of methane, propane, and hydrogen gases [J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3−5): 327–340. DOI: 10.1016/s0950-4230(99)00037-6.
    [19]
    GIERAS M, KLEMENS R. Experimental studies of explosions of methane-air mixtures in a constant volume chamber [J]. Combustion Science and Technology, 2009, 181(4): 641–653. DOI: 10.1080/00102200802665102.
    [20]
    MITTAL M. Explosion pressure measurement of methane-air mixtures in different sizes of confinement [J]. Journal of Loss Prevention in the Process Industries, 2017, 46: 200–208. DOI: 10.1016/j.jlp.2017.02.022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (5052) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return