Citation: | DING Tong, GUO Wencan, ZHANG Xu, WANG Zhongmiao, ZHENG Xianxu, LIU Cangli. Reaction properties of Al-teflon with different particle sizes under laser ablation[J]. Explosion And Shock Waves, 2019, 39(4): 041402. doi: 10.11883/bzycj-2019-0023 |
In order to study reaction properties of Al-teflon with different particle sizes, we prepared Al-teflon reactive material powders by mixing Al powder with particle sizes of 25 μm, 1 μm, and 20-200 nm, where micron-sized teflon powder as raw materials. The laser ablation experiments of Al-teflon reactive material were performed by a pulsed laser system. The self-luminescence imaging and emission spectra in the reaction process were collected and analyzed by ICCD camera and spectrometer. The results show that the reaction properties of Al-teflon reactive material under laser ablation reflect the characteristics of typical secondary reactions, together with continuous combustion characteristics and obvious afterburning effects, and the total energy release time is long. At the same time, the reaction properties is closely related to the particle size of Al powder. As the particle size of Al powder decreases, the reaction becomes more violently in the initial reaction stage. As the reaction progresses, the subsequent reaction capability of the corresponding reactive material with nano-Al size powder gradually decreases, the reaction intensity and reaction time are not as good as the corresponding reaction materials of 1 μm size aluminum powder.
[1] |
石永相, 李文钊. 活性材料的发展与应用 [J]. 飞航导弹, 2017(2): 93–96. DOI: 10.16338/j.issn.1009-1319.2017.02.18
SHI Yongxiang, LI Wenzhao. Development and application of reactive materials [J]. Aerodynamic Missile Journal, 2017(2): 93–96. DOI: 10.16338/j.issn.1009-1319.2017.02.18
|
[2] |
VASANT J S. Process for making polytetrafluoroethylene-aluminum composite and product made: 6547993[P]. US, 2003-4-15.
|
[3] |
DANIEL N B, ASHCROFT B N, DOLL D W. Reactive material enhanced munition com-positions and projectiles containing same: 12/127627 [P]. US, 2008-5-27.
|
[4] |
赵鹏铎, 卢芳云, 李俊玲, 等. 活性材料PTFE/Al动态压缩性能 [J]. 含能材料, 2009, 17(4): 459–462. DOI: 10.3969/j.issn.1006-9941.2009.04.020
ZHAO Pengduo, LU Fangyun, LI Junling, et al. The dynamic compressive properties of PTFE/Al reactive materials [J]. Chinese Journal of Energetic Materials, 2009, 17(4): 459–462. DOI: 10.3969/j.issn.1006-9941.2009.04.020
|
[5] |
徐松林, 阳世清, 张玮, 等. PTFE/Al含能复合物的本构关系 [J]. 爆炸与冲击, 2010, 30(4): 439–444. DOI: 10.11883/1001-1455(2010)04-0439-06
XU Songlin, YANG Shiqing, ZHANG Wei, et al. A constitutive relation for a pressed PTFE/Al energetic composite material [J]. Explosion and Shock Waves, 2010, 30(4): 439–444. DOI: 10.11883/1001-1455(2010)04-0439-06
|
[6] |
AMES R G. Vented chamber calorimetry for impact-initiated energetic materials [C] // The 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, United States, 2005: 275−279. DOI: 10.2514/6.2005-279.
|
[7] |
AMES R G. Energy release characteristics of impact-initiated energetic materials [C] // Proceedings of Materials Research Society Symposium. Boston, Massachusetts, United States, 2005: 0896-H03-08.1-10. DOI: 10.1557/PROC-0896-H03-08
|
[8] |
刘艳君, 肖贵林, 陈军, 等. 活性药形罩毁伤性能仿真及实验研究 [J]. 火工品, 2017(3): 18–21. DOI: 10.3969/j.issn.1003-1480.2017.03.005
LIU Yanjun, XIAO Guilin, CHEN Jun, et al. Simulation and experimental study on the damage performance of reactive liner [J]. Initiation & Pyrotechnics, 2017(3): 18–21. DOI: 10.3969/j.issn.1003-1480.2017.03.005
|
[9] |
肖艳文, 徐峰悦, 郑元枫, 等. 活性材料弹丸碰撞油箱引燃效应实验研究 [J]. 北京理工大学学报, 2017, 37(6): 557–561. DOI: 10.15918/j.tbit1001-0645.2017.06.002
XIAO Yanwen, XU Fengyue, ZHENG Yuanfeng, et al. Experimental study on ignition effects of fuel-filled tank impacted by reactive material projectile [J]. Transactions of Beijing Institute of Technology, 2017, 37(6): 557–561. DOI: 10.15918/j.tbit1001-0645.2017.06.002
|
[10] |
ZHENG X X, ALEXANDER D C, WILLIAM L S, et al. Shock initiation of nano-al+teflon: time-resolved emission studies [J]. Journal of Physical Chemistry: C, 2013, 117: 4866–4875. DOI: 10.1021/jp312637g.
|
[11] |
李金河, 訾攀登, 张旭, 等. 用组合式电磁粒子速度计研究一种活性材料的反应特性 [J]. 高压物理学报, 2017, 31(3): 309–314. DOI: 10.11858/gywlxb.2017.03.013
LI Jinhe, ZI Pandeng, ZHANG Xu, et al. Reaction characteristics of reactive material investigated by embedded electromagnetic velocity gauges [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 309–314. DOI: 10.11858/gywlxb.2017.03.013
|
[1] | ZHANG Wenhao, YU Yonggang. Analysis of gas-eroding barrel characteristics based on fluid-solid interaction[J]. Explosion And Shock Waves, 2023, 43(3): 034201. doi: 10.11883/bzycj-2022-0390 |
[2] | ZHU Lei, LIU Yang, MENG Jinhui, LI Zhiguo, HU Jianbo, LI Guoping, WANG Yonggang. Dynamic mechanical properties and constitutive relationship of selective laser melted Ti-6Al-4V alloy[J]. Explosion And Shock Waves, 2022, 42(9): 091405. doi: 10.11883/bzycj-2021-0227 |
[3] | HE Liling, ZHANG Fangju, YAN Yixia, XIE Ruoze, XU Aimin, ZHOU Yanliang. Study on the impact initiated reaction of Ti-6Al-4V prejectiles by the fracture modes[J]. Explosion And Shock Waves, 2020, 40(12): 122301. doi: 10.11883/bzycj-2020-0046 |
[4] | XIONG Wei, ZHANG Xianfeng, CHEN Yaxu, DING Li, BAO Kuo, CHEN Haihua. Mechanical properties and shock-induced chemical reaction behaviors of cold-rolled Al/Ni multi-layered composites[J]. Explosion And Shock Waves, 2019, 39(5): 055301. doi: 10.11883/bzycj-2017-0451 |
[5] | HU Ling, ZHENG Hang, FENG Qijie, ZHOU Wei, YE Xiangping, LU Lei. Mechanical behavior of long-term neutron-irradiated Al-Mg-Si alloy under compression[J]. Explosion And Shock Waves, 2019, 39(12): 123101. doi: 10.11883/bzycj-2018-0483 |
[6] | GE Chao, Wubuliaisan MAIMAITITUERSUN, TIAN Chao, DONG Yongxiang, SONG Qing. Impact-induced initiation thresholds of polytetrafluoroethylene/Al composite by gas gun[J]. Explosion And Shock Waves, 2018, 38(1): 1-8. doi: 10.11883/bzycj-2017-0030 |
[7] | Wubuliaisan MAIMAITITUERSUN, GE Chao, TIAN Chao, DONG Yongxiang. Impact-induced initiation criteria of PTFE/Al by split Hopkinson pressure bar[J]. Explosion And Shock Waves, 2018, 38(5): 957-965. doi: 10.11883/bzycj-2017-0075 |
[8] | Hu Hongwei, Yan Jiajia, Chen Lang, Guo Wei, Song Pu. Effect of aluminum powder content and its particle size on reaction characteristics for underwater explosion of CL-20-based explosives containing aluminum[J]. Explosion And Shock Waves, 2017, 37(1): 157-161. doi: 10.11883/1001-1455(2017)01-0157-05 |
[9] | Spall behavior of pure aluminum under plate-impactand high energy laser shock loadings[J]. Explosion And Shock Waves, 2016, 36(6): 767-773. doi: 10.11883/1001-1455(2016)06-0767-07 |
[10] | Pei Hong-bo, Jiao Qing-jie, Qin Jian-feng. Reaction process of aluminized RDX-based explosives based on cylinder test[J]. Explosion And Shock Waves, 2014, 34(5): 636-640. doi: 10.11883/1001-1455(2014)05-0636-05 |
[11] | TIAN Zhan-dong, ZHANG Zhen-yu, LU Fang-yun, ZHAOJian-heng. Modelingandsimulationoflaser-inducedignition usingdetailedchemicalkinetics[J]. Explosion And Shock Waves, 2011, 31(3): 285-289. doi: 10.11883/1001-1455(2011)03-0285-05 |
[12] | LAN Sheng-wei, ZENG Xin-wu. Effect of grain size on dynamic mechanical properties of pure aluminum[J]. Explosion And Shock Waves, 2008, 28(5): 462-466. doi: 10.11883/1001-1455(2008)05-0462-05 |
[13] | TONG Hui-feng, TANG Zhi-ping, ZHANG Ling. Simulation of ablation mode laser propulsion[J]. Explosion And Shock Waves, 2007, 27(2): 165-170. doi: 10.11883/1001-1455(2007)02-0165-06 |
[14] | LI Xiao-jie, WANG Zhan-lei, XIE Xing-hua, ZHAO Zheng, SHI Xing-zhi. Experimental study on explosive compaction of WC/Al2O3/Cu powders[J]. Explosion And Shock Waves, 2006, 26(4): 356-360. doi: 10.11883/1001-1455(2006)04-0356-05 |