Volume 40 Issue 2
Jan.  2020
Turn off MathJax
Article Contents
LIU Xiaowen, FENG Jianrui, ZHOU Qiang, CHEN Pengwan. Molecular dynamics simulation of shock consolidation of nano tungsten powder[J]. Explosion And Shock Waves, 2020, 40(2): 024202. doi: 10.11883/bzycj-2019-0057
Citation: LIU Xiaowen, FENG Jianrui, ZHOU Qiang, CHEN Pengwan. Molecular dynamics simulation of shock consolidation of nano tungsten powder[J]. Explosion And Shock Waves, 2020, 40(2): 024202. doi: 10.11883/bzycj-2019-0057

Molecular dynamics simulation of shock consolidation of nano tungsten powder

doi: 10.11883/bzycj-2019-0057
  • Received Date: 2019-02-27
  • Rev Recd Date: 2019-04-04
  • Available Online: 2020-01-15
  • Publish Date: 2020-02-01
  • Shock consolidation of powders is an effective method for fabrication of the high quality tungsten, and molecular dynamics simulation has unique advantages in modelling the rapid process at atomic-scale. In this work, the shock consolidation of nano tungsten powders at room temperature was studied by molecular dynamics using the embedded atomic potential of tungsten. The morphology of the compressed particles, distribution of particle velocity, p-Up, T-Up, T-p curves and radial distribution function were investigated to analyze the effects of particle velocity and jets on the shock consolidation. The mechanism of consolidation was also proposed at micro-scale. The results showed that the nanoparticles could not be compacted to full density at a relatively low impact velocity (<500 m/s), while a good densification could be achieved at high impact velocity (>1 000 m/s); the high pressure due to the extrusion between particles leads to flow and deformation on the surface of the particle. The voids among the particles were filled by the flowing atoms, leading to densification. Particles were melted during the impacts by adjacent particle and jet, which promotes the sintering between particles.
  • loading
  • 韩勇, 范景莲, 刘涛, 等. 高密度纯钨的低温活化烧结工艺及其致密化行为 [J]. 稀有金属材料与工程, 2012, 41(7): 1273–1278. DOI: 10.3969/j.issn.1002-185X.2012.07.032.

    HAN Y, FAN J L, LIU T, et al. Low-temperature activated sintering technology of high-density pure tungsten and its densification behavior [J]. Rare Metal Materials and Engineering, 2012, 41(7): 1273–1278. DOI: 10.3969/j.issn.1002-185X.2012.07.032.
    MARQUIS F D S, MAHAJAN A, MAMALIIS A G. Shock synthesis and densification of tungsten based heavy alloys [J]. Journal of Materials Processing Tech, 2005, 161(1–2): 113–120. DOI: 10.1016/j.jmatprotec.2004.07.060.
    PEIKRISHVILI A, GODIBADZE B, CHAGELISHIVILI E, et al. Hot explosive consolidation of nanostructured tungsten-sliver precursors [J]. European Chemical Bulletin, 2015, 4(1–3): 37–42. DOI: http://dx.doi.org/10.17628/ecb.2015.4.37-42.
    ZHOU Q, CHEN P. Fabrication and characterization of pure tungsten using the hot-shock consolidation [J]. International Journal of Refractory Metals and Hard Materials, 2014, 42(1): 215–220. DOI: 10.1016/j.ijrmhm.2013.09.008.
    DAI C, EAKINS D, THADHANI N, et al. Shock compression response of nanoiron powder compact [J]. Applied Physics Letters, 2007, 90(7): 39. DOI: 10.1063/1.2695522.
    XU J, SAKANOI R, HIGUCHI Y, et al. Molecular dynamics simulation of Ni nanoparticles sintering process in Ni/YSZ multi-nanoparticle system [J]. The Journal of Physical Chemistry C, 2013, 117(19): 9663–9672. DOI: 10.1021/jp310920d.
    ZOHOOR M, MEHDIPOOR A. Numerical simulation of under water explosive compaction process for compaction of tungsten powder [J]. Materials Science Forum, 2008, 566(49): 77–82. DOI: 10.4028/www.scientific.net/MSF.566.77.
    ZOHOOR M, MEHDIPOOR A. Explosive compaction of tungsten powder using a converging under water shock wave [J]. Journal of Materials Processing Technology, 2009, 209(8): 4201–4206. DOI: 10.1016/j.jmatprotec.2008.11.031.
    DAI K D, CHEN P W. Numerical simulation of the shock compaction of W/Cu powders [J]. Materials Science Forum, 2011, 673: 113–118. DOI: 10.4028/www.scientific.net/MSF.673.113.
    EMELCHENKO G A, NAUMENKO I G, VERETENNIKOV V A, et al. Shock consolidation of nanopowdered Ni [J]. Materials Science and Engineering A, 2009, 503(1–2): 55–57. DOI: 10.1016/j.msea.2008.01.097.
    GODIBADZE B, DGEBUADZE A, CHAGELISHVILI E, et al. Dynamic consolidation and investigation of nanostructural W-Cu/W-Y cylindrical billets [J]. Journal of Physics: Conference Series, 2018, 987(1). DOI: 10.1088/1742-6596/987/1/012027.
    DING L, DAVIDCHACK R L, PAN J. A molecular dynamics study of sintering between nanoparticles [J]. Computational Materials Science, 2009, 45(2): 247–256. DOI: 10.1016/j.commatsci.2008.09.021.
    ZHOU X W, JOHNSON R A, WADLEY H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers [J]. Physical Review B, 2004, 69(14): 1124–1133. DOI: 10.1103/PhysRevB.69.144113.
    ZHAO X, WANG S Q, ZHANG C B. Kinetics investigation of sintering of nanometer size metal clusters: a molecular dynamics study [J]. Journal of Materials Science and Technology, 2006, 22(1): 123–126. DOI: 10.3321/j.issn:1005-0302.2006.01.020.
    SONG P, WEN D. Molecular dynamics simulation of the sintering of metallic nanoparticles [J]. Journal of Nanoparticle Research, 2010, 12(3): 823–829. DOI: 10.1007/s11051-009-9718-7.
    KADAU K, ENTEL P, LOMDAHL P S. Molecular-dynamics study of martensitic transformations in sintered Fe-Ni nanoparticles [J]. Computer Physics Communications, 2002, 147(1–2): 126–129. DOI: 10.1016/S0010-4655(02)00230-8.
    ZHU H L. Sintering processes of two nanoparticles: a study by molecular dynamics simulations [J]. Philosophical Magazine Letters, 1996, 73(1): 27–33. DOI: 10.1080/095008396181073.
    TAVAKOL M, MAHNAMA M, NAGHDABADI R. Shock wave sintering of Al/SiC metal matrix nano-composites: a molecular dynamics study [J]. Computational Materials Science, 2016, 125: 255–262. DOI: 10.1016/j.commatsci.2016.08.032.
    ARCIDIACONO S, BIERI N R, POULIKAKOS D, et al. On the coalescence of gold nanoparticles [J]. International Journal of Multiphase Flow, 2004, 30(7): 979–994.
    HENZ B J, HAWA T, ZACHARIAH M. Molecular dynamics simulation of the energetic reaction between Ni and Al nanoparticles [J]. Journal of Applied Physics, 2009, 105(12): 124310. DOI: 10.1063/1.3073988.
    HENZ B J, HAWA T, ZACHARIAH M. Molecular dynamics simulation of the kinetic sintering of Ni and Al nanoparticles [J]. Molecular Simulation, 2009, 35(10-11): 804–811. DOI: 10.1080/08927020902818021.
    GUNKELMANN N, ROSANDI Y, RUESTES C J, et al. Compaction and plasticity in nanofoams induced by shock waves: a molecular dynamics study [J]. Computational Materials Science, 2016, 119: 27–32. DOI: 10.1016/j.commatsci.2016.03.035.
    CHENG B, NGAN A H W. The sintering and densification behaviour of many copper nanoparticles: a molecular dynamics study [J]. Computational Materials Science, 2013, 74(74): 1–11. DOI: 10.1016/j.commatsci.2013.03.014.
    KART H H, WANG G, KARAMAN I. Molecular dynamics study of the coalescence of equal and unequal sized Cu nanoparticales [J]. International Journal of Modern Physics C, 2009, 20(2): 179–196. DOI: 10.1142/S0129183109013534.
    CHEN L, FAN J L, GONG H R. Phase transition and mechanical properties of tungsten nanomaterials from molecular dynamic simulation [J]. Journal of Nanoparticle Research, 2017, 19(3): 118. DOI: 10.1007/s11051-017-3812-z.
    YOUSEFI M, KHOIE M M. Molecular dynamics simulation of Ni/Cu-Ni nanoparticles sintering under various crystallographic, thermodynamic and multi-nanoparticles conditions [J]. European Physical Journal D, 2015, 69(3): 71. DOI: 10.1140/epjd/e2015-50830-4.
    何安民. 金属铜冲击熔化机制与动力学特性微观模拟研究[D]. 四川绵阳: 中国工程物理研究院, 2014.
    于超, 任会兰, 宁建国. 钨合金冲击塑性行为的分子动力学模拟 [J]. 高压物理学报, 2013, 27(2): 211–215. DOI: 10.11858/gywlxb.2013.02.007.

    YU C, REN H L, NING J G. Molecular dynamics simulation on shock plasticity behavior of tungsten alloy [J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 211–215. DOI: 10.11858/gywlxb.2013.02.007.
    于超. 穿甲弹用钨合金的冲击实验与纳观力学机理模拟研究[D]. 北京: 北京理工大学, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (5289) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return