Volume 39 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
LU Qiang, WANG Zhanjiang, ZHU Yurong, DING Yang, GUO Zhiyun. Construction of motion and deformation field in granite under tamped explosion using wave propagation coefficient[J]. Explosion And Shock Waves, 2019, 39(8): 083103. doi: 10.11883/bzycj-2019-0140
Citation: LU Qiang, WANG Zhanjiang, ZHU Yurong, DING Yang, GUO Zhiyun. Construction of motion and deformation field in granite under tamped explosion using wave propagation coefficient[J]. Explosion And Shock Waves, 2019, 39(8): 083103. doi: 10.11883/bzycj-2019-0140

Construction of motion and deformation field in granite under tamped explosion using wave propagation coefficient

doi: 10.11883/bzycj-2019-0140
  • Received Date: 2019-04-22
  • Rev Recd Date: 2019-06-05
  • Available Online: 2019-06-25
  • Publish Date: 2019-08-01
  • In order to use the measured particle velocities from spherical wave experiment to analyze the motion and deformation characteristics of medium under underground explosion, a new method for constructing the motion and deformation field for underground explosion was proposed based on the viscoelastic spherical wave theory and local viscoelastic equivalence hypothesis. Firstly, the velocity spectrums of the adjacent measuring points in granite were used to find out the corresponding spectrum ratio. Secondly, the equivalent spherical wave propagation coefficient in the region between adjacent measuring points was obtained by combining the theoretical spectrum ratio given by viscoelastic spherical wave theory. Thirdly, using the local viscoelastic equivalence hypothesis, the velocity spectrum of the particle at any point between adjacent measuring points was dramn out, and then the time domain waveform of the particle velocity was obtained by the inverse Fourier transform. Finally, the physical relationships between the motion field and the deformation field were used to construct the motion field and the deformation field in the whole analysis region. The results showed that the wave propagation coefficients obtained from the inversion of adjacent measuring points can construct the motion and deformation fields of the medium in the region between corresponding measuring points with high precision. Within the radius of 15-50 mm, the peak value of radial compressive strain decreased from 1.7×10−2 to 2.1×10−3, the peak value of tangential tensile strain decreased from 4.7×10−3 to 0.4×10−3, the peak value of radial compressive strain rate decreased from 5.1×104 s−1 to 2.5×103 s−1, and the peak value of tangential tensile strain rate decreases from 5.0×103 s−1 to 1.4×102 s−1, covering the whole process of loading and unloading from high strain (or strain rate) to intermediate and low strain (or strain rate).
  • loading
  • [1]
    KOLSKY H. The propagation of stress pulses in viscoelastic solids [J]. Philosophical Magazine Letters, 1956, 1(8): 693–710. DOI: 10.1080/14786435608238144.
    [2]
    HUNTER S C. Viscoelastic waves [C] // Progress in solid mechanics. North-Holland Amsterdam, 1960: 3−56.
    [3]
    ZHAO H, GARY G, KLEPACZKO J R. On the use of a viscoelastic split Hopkinson pressure bar [J]. International Journal of Impact Engineering, 1997, 19(4): 319–330. DOI: 10.1016/s0734-743x(96)00038-3.
    [4]
    ZHAO H, GARY G. A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar. Application to experimental techniques [J]. Journal of the Mechanics and Physics of Solids, 1995, 43(8): 1335–1348. DOI: 10.1016/0022-5096(95)00030-M.
    [5]
    BACON C, BRUN A. Methodology for a Hopkinson test with a non-uniform viscoelastic bar [J]. International Journal of Impact Engineering, 2000, 24(3): 219–230. DOI: 10.1016/s0734-743x(99)00166-9.
    [6]
    BACON C. Separation of waves propagating in an elastic or viscoelastic Hopkinson pressure bar with three-dimensional effects [J]. International Journal of Impact Engineering, 1999, 22(1): 55–69. DOI: 10.1016/s0734-743x(98)00048-7.
    [7]
    BACON C, HOSTEN B, GUILLIORIT E. One-dimensional prediction of the acoustic waves generated in a multilayer viscoelastic body by microwave irradiation [J]. Journal of Sound and Vibration, 2000, 238(5): 853–867. DOI: 10.1006/jsvi.2000.3136.
    [8]
    BACON C. An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar [J]. Experimental Mechanics, 1998, 38(4): 242–249. DOI: 10.1007/bf02410385.
    [9]
    CASEM D T. Wave propagation in viscoelastic pressure bars using single-point measurements of strain and velocity [J]. Polymer Testing, 2003, 22(2): 155–164. DOI: 10.1016/s0142-9418(02)00064-8.
    [10]
    MOUSAVI S. Non-equilibruim split Hopkinson pressure bar procedure for non-parametric identification of complex modulus [J]. International Journal of Impact Engineering, 2005, 31(9): 1133–1151. DOI: 10.1016/j.ijimpeng.2004.07.002.
    [11]
    MOUSAVI S, NICOLAS D F, LUNDBERG B. Identification of complex moduli and Poisson’s ratio from measured strains on an impacted bar [J]. Journal of Sound and Vibration, 2004, 277(4-5): 971–986. DOI: 10.1016/j.jsv.2003.09.053.
    [12]
    BENATAR A, RITTEL D, YARIN A L. Theoretical and experimental analysis of longitudinal wave propagation in cylindrical viscoelastic rods [J]. Journal of the Mechanics and Physics of Solids, 2003, 51(8): 1413–1431. DOI: 10.1016/s0022-5096(03)00056-5.
    [13]
    CHREE C. The equations of an isotropic elastic solid in polar and cylindrical coordinates their solution and application [J]. Transactions of the Cambridge Philosophical Society, 1889, 14: 250–369.
    [14]
    AHONSI B, HARRIGAN J J, ALEYAASIN M. On the propagation coefficient of longitudinal stress waves in viscoelastic bars [J]. International Journal of Impact Engineering, 2012, 45: 39–51. DOI: 10.1016/j.ijimpeng.2012.01.004.
    [15]
    BUTT H S U, XUE P, JIANG T Z, et al. Parametric identification for material of viscoelastic SHPB from wave propagation data incorporating geometrical effects [J]. International Journal of Mechanical Sciences, 2015, 91: 46–64. DOI: 10.1016/j.ijmecsci.2014.06.003.
    [16]
    BUTT H S U, XUE P. Determination of the wave propagation coefficient of viscoelastic SHPB: Significance for characterization of cellular materials [J]. International Journal of Impact Engineering, 2014, 74: 83–91. DOI: 10.1016/j.ijimpeng.2013.11.010.
    [17]
    FAN L F, WONG L N Y, MA G W. Experimental investigation and modeling of viscoelastic behavior of concrete [J]. Construction and Building Materials, 2013, 48: 814–821. DOI: 10.1016/j.conbuildmat.2013.07.010.
    [18]
    OTHMAN R. On the use of complex Young's modulus while processing polymeric Kolsky-Hopkinson bars' experiments [J]. International Journal of Impact Engineering, 2014, 73: 123–134. DOI: 10.1016/j.ijimpeng.2014.06.009.
    [19]
    卢强, 王占江, 丁洋, 等. 线黏弹性球面发散应力波的频率响应特性 [J]. 爆炸与冲击, 2017, 37(6): 1023–1030. DOI: 10.11883/1001-1455(2017)06-1023-08.

    LU Qiang, WANG Zhanjiang, DING Yang, et al. Characteristics of frequency response for linear viscoelastic spherical divergent stress waves [J]. Explosion and Shock Waves, 2017, 37(6): 1023–1030. DOI: 10.11883/1001-1455(2017)06-1023-08.
    [20]
    LU Q, WANG Z J. Studies of the propagation of viscoelastic spherical divergent stress waves based on the generalized Maxwell model [J]. Journal of Sound and Vibration, 2016, 371: 183–195. DOI: 10.1016/j.jsv.2016.02.034.
    [21]
    王占江, 李孝兰, 张若棋, 等. 固体介质中球形发散波的实验装置 [J]. 爆炸与冲击, 2000, 20(2): 103–109.

    WANG Zhanjiang, LI Xiaolan, ZHANG Ruoqi, et al. An experimental apparatus for spherical wave propagation in solid [J]. Explosion and Shock Waves, 2000, 20(2): 103–109.
    [22]
    王占江, 张德志, 张向荣, 等. 蓝田花岗岩冲击压缩特性的实验研究 [J]. 岩石力学与工程学报, 2003, 22(5): 797–802. DOI: 10.3321/j.issn:1000-6915.2003.05.020.

    WANG Zhanjiang, ZHANG Dezhi, ZHANG Xiangrong, et al. Testing study on shock compression for Lantian granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 797–802. DOI: 10.3321/j.issn:1000-6915.2003.05.020.
    [23]
    卢强, 王占江, 门朝举, 等. 有机玻璃中球形应力波传播的分析 [J]. 爆炸与冲击, 2013, 33(6): 561–566. DOI: 10.11883/1001-1455(2013)06-0561-06.

    LU Qiang, WANG Zhanjiang, MEN Chaoju, et al. Analysis of spherical stress save propagating in PMMA [J]. Explosion and Shock Waves, 2013, 33(6): 561–566. DOI: 10.11883/1001-1455(2013)06-0561-06.
    [24]
    卢强, 王占江. 标准线性固体材料中球面应力波传播特征研究 [J]. 物理学报, 2015, 64(10): 108301. DOI: 10.7498/aps.64.108301.

    LU Qiang, WANG Zhanjiang. Characteristics of spherical stress wave propagation in the standard linear solid material [J]. Acta Physica Sinica, 2015, 64(10): 108301. DOI: 10.7498/aps.64.108301.
    [25]
    王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (5531) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return