Citation: | QIAN Bingwen, ZHOU Gang, LI Jin, LI Yunliang, ZHANG Dezhi, ZHANG Xiangrong, ZHU Yurong, TAN Shushun, JING Jiyong, ZHANG Zidong. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target[J]. Explosion And Shock Waves, 2019, 39(8): 083301. doi: 10.11883/bzycj-2019-0141 |
王明洋, 邱艳宇, 李杰, 等. 超高速长杆弹对岩石侵彻, 地冲击效应理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(3): 564–572.
WANG Mingyang, QIU Yanyu, LI Jie, et al. Theoretical and experimental study on penetration in rock and ground impact effects of long rod projectiles of hyper speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 564–572.
|
李干, 宋春明, 邱艳宇, 等. 超高速弹对花岗岩侵彻深度逆减现象的理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 60–66.
LI Gan, SONG Chunming, QIU Yanyu, et al. Theoretical and experimental studies on the phenomenon of reduction in penetration depth of hyper-velocity projectiles into granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 60–66.
|
牛雯霞, 黄洁, 柯发伟, 等. 混凝土房屋结构靶的超高速撞击特性研究 [J]. 实验流体力学, 2014, 28(2): 79–84. doi: 10.11729/syltlx2014pz38
NIU Wenxia, HUANG Jie, KE Fawei, et al. Research on hypervelocity impact characteristics of concrete building structures target [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 79–84. doi: 10.11729/syltlx2014pz38
|
张浩, 张庆明. 铝弹丸超高速撞击混凝土介质冲击熔化研究 [C] // 北京力学会第20届学术年会论文集. 北京, 2014: 268−269.
|
ANTOUN T H, GLENN L A, WALTON O R, et al. Simulation of hypervelocity penetration in limestone [J]. International Journal of Impact Engineering, 2006, 33: 45–52. doi: 10.1016/j.ijimpeng.2006.09.009
|
邓国强, 杨秀敏. 超高速武器对地打击效应数值仿真 [J]. 科技导报, 2015, 33(16): 65–71. doi: 10.3981/j.issn.1000-7857.2015.16.010
DENG Guoqiang, YANG Xiumin. Numerical simulation of damage effect of hypervelocity weapon on ground target [J]. Science & Technology Review, 2015, 33(16): 65–71. doi: 10.3981/j.issn.1000-7857.2015.16.010
|
张德志, 唐润棣, 林俊德, 等. 新型气体驱动二级轻气炮研制 [J]. 兵工学报, 2004, 25(1): 14–17. doi: 10.3321/j.issn:1000-1093.2004.01.004
ZHANG Dezhi, TANG Rundi, LIN Junde, et al. Development of a new type gas-driven two-stage light gas gun [J]. Acta Armamentarii, 2004, 25(1): 14–17. doi: 10.3321/j.issn:1000-1093.2004.01.004
|
王可慧. 高速弹体侵彻混凝土靶研究 [D]. 北京: 北京理工大学, 2011.
|
钱秉文, 周刚, 李进, 等. 钨合金弹体超高速撞击混凝土靶成坑特性研究 [J]. 北京理工大学学报, 2018, 38(10): 26–31.
QIAN Bingwen, ZHOU Gang, LI Jin, et al. Study of the crater produced by hypervelocity tungsten alloy projectile into concrete target [J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 26–31.
|
STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high strain rate [J]. Journal of Applied Mechanics, 1989, 65(4): 1528–1533.
|
HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [C] // Proceedings of the 14th International Symposium on Ballistics. Quebec, Canada, 1993: 591−600.
|
RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA2B2500 numerical analysis using a new macroscopic concrete model for hydrocodes [C] // 9th International Symposium, Interaction of the Effects of Munitions with Structures. Berlin-Strausberg: IBMAC, 1999: 315−322.
|
钱秉文. 钨合金弹体超高速撞击混凝土靶实验研究和机理探索 [D]. 北京: 清华大学, 2016.
|
EICHELBERGER R J. Experimental test of the theory of penetration by metallic jets [J]. Journal of Applied Physics, 1956, 27(1): 63–68. doi: 10.1063/1.1722198
|
ORPHAL D L. Phase three penetration [J]. International Journal of Impact Engineering, 1997, 20(6): 601–616.
|
[1] | CHEN Xing, HAN Bin, CUI Zhonghua, LI Zhiwen, GUO Mingkai, WANG Guilong. Experimental study of the radiation characteristics of hypervelocity impact flash[J]. Explosion And Shock Waves, 2025, 45(7): 071416. doi: 10.11883/bzycj-2024-0355 |
[2] | QIAN Bingwen, ZHOU Gang, CHEN Chunlin, MA Kun, LI Yishuo, GAO Pengfei, YIN Lixin. Measurement and analysis of stress waves in concrete target under hypervelocity impact[J]. Explosion And Shock Waves, 2025, 45(5): 054101. doi: 10.11883/bzycj-2024-0181 |
[3] | REN Siyuan, WU Qiang, ZHANG Pinliang, SONG Guangming, CHEN Chuan, GONG Zizheng, LI Zhengyu. A study of damage characteristics caused by hypervelocity impact of reactive projectile on the honeycomb sandwich panel double-layer structure[J]. Explosion And Shock Waves, 2024, 44(7): 073302. doi: 10.11883/bzycj-2023-0272 |
[4] | QIAN Bingwen, ZHOU Gang, LI Mingrui, YIN Lixin, GAO Pengfei, CHEN Chunlin, MA Kun. Rigid-body critical transformation velocity of a high-strength steel projectile penetrating concrete targets at high velocities[J]. Explosion And Shock Waves, 2024, 44(10): 103301. doi: 10.11883/bzycj-2022-0309 |
[5] | QIAN Bingwen, ZHOU Gang, LI Mingrui, CHEN Chunlin, GAO Pengfei, SHEN Zikai, MA Kun. Influences of material properties of a projectile on hypervelocity penetration depth[J]. Explosion And Shock Waves, 2024, 44(10): 103302. doi: 10.11883/bzycj-2022-0310 |
[6] | LIAO Huming, LI Bo, FAN Jiang, JIAO Lixin, YU Shuaichao, LIN Jianyu, PEI Xiaoyang. OTM analysis of debris cloud under hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(10): 103301. doi: 10.11883/bzycj-2021-0275 |
[7] | CHEN Lütan, HE Qiguang, CHEN Xiaowei. Numerical modeling on the launch process of a two-stage light gas gun using high-pressure gas as the driving source[J]. Explosion And Shock Waves, 2022, 42(12): 124201. doi: 10.11883/bzycj-2022-0054 |
[8] | JIA Xing, TANG Longhuang, WENG Jidong, MA Heli, TAO Tianjiong, LIU Shenggang, CHEN Long, ZHANG Linwen, WANG Xiang. Microwave velocity interferometry for the parameter diagnosis of the interior ballistic of a two-stage light gas gun or powder gun[J]. Explosion And Shock Waves, 2022, 42(3): 034101. doi: 10.11883/bzycj-2021-0303 |
[9] | CHI Runqiang, DUAN Yongpan, PANG Baojun, CAI Yuan. Effects of gas pressure on the front wall damage of pressure vessel impacted by hypervelocity projectile[J]. Explosion And Shock Waves, 2021, 41(2): 021404. doi: 10.11883/bzycj-2020-0310 |
[10] | ZHOU Gang, LI Mingrui, WEN Heming, QIAN Bingwen, SUO Tao, CHEN Chunlin, MA Kun, FENG Na. Mechanism on hypervelocity penetration of a tungsten alloy projectile into a concrete target[J]. Explosion And Shock Waves, 2021, 41(2): 021407. doi: 10.11883/bzycj-2020-0304 |
[11] | CHEN Beibei, ZHANG Xianfeng, DENG Jiajie, ZHANG Jian, BAO Kuo, TAN Mengting. Residual penetration depth of a projectile into YAG transparent ceramic/glass[J]. Explosion And Shock Waves, 2020, 40(8): 083301. doi: 10.11883/bzycj-2019-0372 |
[12] | PENG Yong, LU Fangyun, FANG Qin, WU Hao, LI Xiangyu. Analyses of the size effect for projectile penetrations into concrete targets[J]. Explosion And Shock Waves, 2019, 39(11): 113301. doi: 10.11883/bzycj-2018-0402 |
[13] | WANG Mingyang, LI Jie, LI Haibo, QIU Yanyu. Dynamic compression behavior of rock and simulation of damage effects of hypervelocity kinetic energy bomb[J]. Explosion And Shock Waves, 2018, 38(6): 1200-1217. doi: 10.11883/bzycj-2018-0173 |
[14] | DENG Jiajie, ZHANG Xianfeng, LIU Chuang, WANG Wenjie, XU Chenyang. Experimental and theoretical study of symmetrical grooved-nose projectile penetrating into semi-infinite aluminum target[J]. Explosion And Shock Waves, 2018, 38(6): 1231-1240. doi: 10.11883/bzycj-2017-0413 |
[15] | WU Cheng, SHEN Xiaojun, WANG Xiaoming, YAO Wenjin. Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target[J]. Explosion And Shock Waves, 2018, 38(6): 1364-1371. doi: 10.11883/bzycj-2017-0123 |
[16] | Tang Enling, Shi Xiaohan, Wang Meng, Wang Di, Xiang Shenghai, Xia Jin, Liu Shuhua, He Liping, Han Yafei. Perforation characteristics of cylindrical shell free beamunder high-speed impact[J]. Explosion And Shock Waves, 2016, 36(1): 121-128. doi: 10.11883/1001-1455(2016)01-0121-08 |
[17] | Deng Jiajie, Zhang Xianfeng, Qiao Zhijun, Guo Lei, He Yong, Chen Dongdong. An analytic model of penetration for oval-nosed projectile penetrating into pre-drilled target[J]. Explosion And Shock Waves, 2016, 36(5): 625-632. doi: 10.11883/1001-1455(2016)05-0625-08 |
[18] | LaiJian-zhong, ZhuYao-yong, XuSheng, GuoXu-jia. Resistanceofultra-high-performancecementitious compositestomultipleimpactpenetration[J]. Explosion And Shock Waves, 2013, 33(6): 601-607. doi: 10.11883/1001-1455(2013)06-0601-07 |
[19] | WU Hao, FANGQin, GONG Zi-ming. Semi-theoreticalanalysesforpenetrationdepthofrigidprojectiles withdifferentnosegeometriesintoconcrete(rock)target[J]. Explosion And Shock Waves, 2012, 32(6): 573-580. doi: 10.11883/1001-1455(2012)06-0573-08 |
[20] | JIA Guang-hui, HUANG Hai, HU Zhen-dong. Simulation analyse of hypervelocity impact perforation[J]. Explosion And Shock Waves, 2005, 25(1): 47-53. doi: 10.11883/1001-1455(2005)01-0047-07 |
1. | 钱秉文,尹立新,陈春林,马坤,胡玉涛,柏准,侯飞宇,周刚. 超高速撞击条件下混凝土靶内应力波衰减规律研究. 北京理工大学学报. 2025(03): 240-247 . ![]() | |
2. | 钱秉文,周刚,陈春林,马坤,李艺烁,高鹏飞,尹立新. 超高速撞击条件下混凝土靶体内应力波的测量和分析. 爆炸与冲击. 2025(05): 130-141 . ![]() | |
3. | 钱秉文,周刚,李名锐,陈春林,高鹏飞,沈子楷,马坤. 弹体材料性能对超高速侵彻深度的影响规律. 爆炸与冲击. 2024(10): 158-168 . ![]() | |
4. | 吴耀鹏,李嘉樾,钱秉文,张伟,邢泽晖. 超高速钨合金长杆弹侵彻花岗岩靶的毁伤效应. 土木工程学报. 2024(11): 81-91 . ![]() | |
5. | 王鹏,付建平,崔晋,袁浩,昝守东,石晓山,杨丽. 钨杆超高速侵彻混凝土靶侵彻深度研究. 兵器装备工程学报. 2023(07): 101-108 . ![]() | |
6. | 张山豹,孔祥振,方秦,洪建. 弹体超高速侵彻石灰岩靶体地冲击的数值模拟研究. 爆炸与冲击. 2022(01): 74-86 . ![]() | |
7. | 吴学志,程怡豪,宋春明,王德荣,王可佳. 高速侵彻下弹体纵向应力分布规律与变形破坏关联机制的数值计算研究. 防护工程. 2022(02): 30-36 . ![]() | |
8. | 王猛,丁羽波. 弹体高速侵彻厚钢筋混凝土靶的数值模拟. 科学技术与工程. 2022(16): 6506-6514 . ![]() | |
9. | 姚志彦,李金柱,齐凯丽,徐杨,黄风雷. 长杆弹超高速侵彻砂浆靶临界速度的实验和计算. 兵工学报. 2022(07): 1578-1588 . ![]() | |
10. | 周刚,李名锐,文鹤鸣,钱秉文,索涛,陈春林,马坤,冯娜. 钨合金弹体对混凝土靶的超高速侵彻机理. 爆炸与冲击. 2021(02): 93-106 . ![]() | |
11. | 高飞,张国凯,纪玉国,陈建宇. 卵形弹体超高速侵彻砂浆靶的响应特性. 兵工学报. 2020(10): 1979-1987 . ![]() |