Volume 39 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
ZHU Yaoliang, YU Jin, GAO Haidong, LI Gang, ZHOU Xianqi, ZHENG Xiaoqing. Effect of water cooling on microscopic damage and dynamic properties of high-temperature granite[J]. Explosion And Shock Waves, 2019, 39(8): 083104. doi: 10.11883/bzycj-2019-0169
Citation: ZHU Yaoliang, YU Jin, GAO Haidong, LI Gang, ZHOU Xianqi, ZHENG Xiaoqing. Effect of water cooling on microscopic damage and dynamic properties of high-temperature granite[J]. Explosion And Shock Waves, 2019, 39(8): 083104. doi: 10.11883/bzycj-2019-0169

Effect of water cooling on microscopic damage and dynamic properties of high-temperature granite

doi: 10.11883/bzycj-2019-0169
  • Received Date: 2019-04-26
  • Rev Recd Date: 2019-05-21
  • Publish Date: 2019-08-01
  • The microscopic damage and dynamic mechanical properties of high-temperature granite after water cooling were studied through wave velocity test, nuclear magnetic resonance (NMR) test, split Hopkinson pressure bar (SHPB) impact test and scanning electron microscope(SEM)test. The variation of porosity and dynamic mechanical parameters of granite were analyzed. The results show that the wave velocity of high-temperature granite decreases nonlinearly after water cooling and the components of porosity with large pore increase with the increase of temperature. Moreover, water cooling leads to the more cracks and greater crack sizes than that of natural cooling. The dynamic parameters of high-temperature granite after water cooling show that the increase in temperature results in a decrease in the peak stress, an increase in the peak strain, and an increase at first then decrease in the elastic modulus. Additional thermal stress, resulted from sharply decrease in surface temperature of the high-temperature granite, leads to increased internal damage and decreased wave velocity and peak stress. Compared with natural cooling, the plasticity of high-temperature granite is reduced, because the cold hardening effect improves the hardness of surface granite. After water cooling, the granite specimens exhibit the brittle failure characteristics and their peak strain decreases but their elastic modulus increases. Cooling way has a minor effect on the cracks induced by shock before 400 ℃. As the temperature up to 800 ℃, the impact fracture surface of granite after natural cooling is characterized by honeycomb and irregular shape, in contrast, the impact fracture surface of granite after the water cooling is relatively flat.
  • loading
  • [1]
    熊良宵, 虞利军. 高温作用下和高温后岩石力学特性的研究进展 [J]. 地质灾害与环境保护, 2018, 29(1): 76–82. DOI: 10.3969/j.issn.1006-4362.2018.01.015.

    XING Liangxiao, YU Lijun. Advances of mechanical properties of rock under high temperature and after high temperature [J]. Journal of Geolgoical Hazards and Environment Preservation, 2018, 29(1): 76–82. DOI: 10.3969/j.issn.1006-4362.2018.01.015.
    [2]
    徐小丽, 高峰, 高亚楠, 等. 高温后花岗岩力学性质变化及结构效应研究 [J]. 中国矿业大学学报, 2008, 37(3): 402–406. DOI: 10.3321/j.issn:1000-1964.2008.03.024.

    XU Xiaoli, GAO Feng, GAO Ya’nan, et al. Effect of high temperatures on the mechanical characteristics and crystal structure of granite [J]. Journal of China University of Mining and Technology, 2008, 37(3): 402–406. DOI: 10.3321/j.issn:1000-1964.2008.03.024.
    [3]
    CHEN Y L, NI J, SHAO W, et al. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading [J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 56(15): 62–66. DOI: 10.1016/j.ijrmms.2012.07.026.
    [4]
    LIU S, XU J. Mechanical properties of Qinling biotite granite after high temperature treatment [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71: 188–193. DOI: 10.1016/j.ijrmms.2014.07.008.
    [5]
    DWIVEDI R D, GOEL R K, PRASAD V V R, et al. Thermo-mechanical properties of Indian and other granites [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3): 303–315. DOI: 10.1016/j.ijrmms.2007.05.008.
    [6]
    蔡燕燕, 罗承浩, 俞缙, 等. 热损伤花岗岩三轴卸围压力学特性试验研究 [J]. 岩土工程学报, 2014, 37(7): 1173–1180. DOI: 10.11779/cjge201507002.

    CAI Yanyan, LUO Chenghao, YU Jin, et al. experimental study on mechanical properties of thermal-damage granite rock under triaxial unloading confining pressure [J]. Chinese Journal of Geotechnical Engineering, 2014, 37(7): 1173–1180. DOI: 10.11779/cjge201507002.
    [7]
    刘石, 许金余, 支乐鹏, 等. 高温后大理岩的冲击力学特性试验研究 [J]. 岩石力学与工程学报, 2013, 32(2): 273–280. DOI: 10.3969/j.issn.1000-6915.2013.02.008.

    LIU Shi, XU Jinyu, ZHI Lepeng, et al. Experimental resarch on mechanical behaviors of marble after high temperatures subjected to impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 273–280. DOI: 10.3969/j.issn.1000-6915.2013.02.008.
    [8]
    李明, 茅献彪, 曹丽丽, 等. 高温后砂岩动力特性应变率效应的试验研究 [J]. 岩土力学, 2014, 35(12): 3479–3488. DOI: 1000-7598(2014)12-3479-10.

    LI Ming, MAO Xianbiao, CAO Lili, et al. Experimental study of mechanical properties on strain rate effect of sandstones after high temperature [J]. Rock and Soil Mechanics, 2014, 35(12): 3479–3488. DOI: 1000-7598(2014)12-3479-10.
    [9]
    陈腾飞, 许金余, 刘石, 等. 经历不同高温后砂岩的动态力学特性实验研究 [J]. 爆炸与冲击, 2014, 34(2): 195–201. DOI: 10.11883/1001-1455(2014)02-0195-07.

    CHEN Tengfei, XU Jinyu, LIU Shi, et al. Experimental study on dynamic mechanical properties of post-high-temperature sandstone [J]. Explosion and Shock Waves, 2014, 34(2): 195–201. DOI: 10.11883/1001-1455(2014)02-0195-07.
    [10]
    尹土兵, 李夕兵, 周子龙, 等. 粉砂岩高温后动态力学特性研究 [J]. 地下空间与工程学报, 2007, 3(6): 1060–1063. DOI: 1673-0836(2007)06-1060-04.

    YIN Tubing, LI Xibing, ZHOU Zilong, et al. Study on mechanical properties of post-high-temperature sandstone [J]. Chinese Journal of Underground Space and Engineering, 2007, 3(6): 1060–1063. DOI: 1673-0836(2007)06-1060-04.
    [11]
    尹土兵, 李夕兵, 王斌, 等. 高温后砂岩动态压缩条件下力学特性研究 [J]. 岩土工程学报, 2011, 33(5): 777–784. DOI: 1000-4548(2011)05-0777-08.

    YIN Tubing, LI Xibing, WANG Bin, et al. Mechanical properties of sandstones after high temperature under dynamic loading [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 777–784. DOI: 1000-4548(2011)05-0777-08.
    [12]
    刘石, 许金余. 高温作用对花岗岩动态压缩力学性能的影响研究 [J]. 振动与冲击, 2014, 33(4): 195–198. DOI: 10.3969/j.issn.1000-3835.2014.04.035.

    LIU Shi, XU Jinyu. Effect of high temperature on dynamic compressive mechanical properties of granite [J]. Journal of Vibration and Shock, 2014, 33(4): 195–198. DOI: 10.3969/j.issn.1000-3835.2014.04.035.
    [13]
    支乐鹏, 许金余, 刘志群, 等. 高温后花岗岩冲击破坏行为及波动特性研究 [J]. 岩石力学与工程学报, 2013, 32(1): 135–142. DOI: 10.3969/j.issn.1000-6915.2013.01.019.

    ZHI Lepeng, XU Jinyu, LIU Zhiqun, et al. Research on impacting failure behavior and fluctuation characteristics of granite exposed to high temperature [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 135–142. DOI: 10.3969/j.issn.1000-6915.2013.01.019.
    [14]
    卢志堂, 王志亮. 温度与冲击荷载耦合下花岗岩动力性质 [J]. 哈尔滨工业大学学报, 2016, 48(6): 143–149. DOI: 10.11918/j.issn.0367-6234.2016.06.023.

    LU Zhitang, WANG Zhiliang. Dynamic properties of granite subjected to coupling action of impact loading with actual temperature [J]. Journal of Harbin Institute of Technology, 2016, 48(6): 143–149. DOI: 10.11918/j.issn.0367-6234.2016.06.023.
    [15]
    黄真萍, 张义, 吴伟达. 遇水冷却的高温大理岩力学与波动特性分析 [J]. 岩土力学, 2016, 37(2): 367–375. DOI: 10.16285/j.rsm.2016.02.008.

    HUANG Zhenping, ZHANG Yi, WU Weida. Analysis of mechanical and wave properties of heat-treated marble by water cooling [J]. Rock and Soil Mechanics, 2016, 37(2): 367–375. DOI: 10.16285/j.rsm.2016.02.008.
    [16]
    黄真萍, 张义, 孙艳坤, 等. 高温遇水冷却石灰岩力学与声学性质研究 [J]. 中南大学学报(自然科学版), 2016(12): 4181–4189. DOI: 10.11817/j.issn.1672-7207.2016.12.029.

    HUANG Zhenping, ZHANG Yi, SUN Yankun, et al. Mechaniccal and acoustic characteristics of high temperature limestone with water cooling treatment [J]. Journal of Central South University (Science and Technology), 2016(12): 4181–4189. DOI: 10.11817/j.issn.1672-7207.2016.12.029.
    [17]
    郤保平, 赵阳升. 600 ℃内高温状态花岗岩遇水冷却后力学特性试验研究 [J]. 岩石力学与工程学报, 2010, 29(5): 892–899.

    XI Baoping, ZHAO Yangsheng. Experimental research on mechanical properties of tercooled granite under high temperatures within 600 ℃ [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 892–899.
    [18]
    朱振南, 田红, 董楠楠, 等. 高温花岗岩遇水冷却后物理力学特性试验研究 [J]. 岩土力学, 2018, 39(S2): 169–175. DOI: 10.16285/j.rsm.2018.0967.

    ZHU Zhennan, TIAN Hong, DONG Nannan, et al. Experimental study of physico-mechanical properties of heat-treated granite by water cooling [J]. Rock and Soil Mechanics, 2018, 39(S2): 169–175. DOI: 10.16285/j.rsm.2018.0967.
    [19]
    梁铭, 张绍和, 舒彪. 不同冷却方式对高温花岗岩巴西劈裂特性的影响 [J]. 水资源与水工程学报, 2018, 138(2): 189–196. DOI: cnki:sun:xbsz.0.2018-02-031.

    LIANG Ming, ZHANG Shaohe, SHU Biao. Effect of different cooling ways on Brazilian tension characteristics of heat-treated granite [J]. Journal of Water Resources & Water Engineering, 2018, 138(2): 189–196. DOI: cnki:sun:xbsz.0.2018-02-031.
    [20]
    翟越, 王思维, 石蕴美, 等. 高温-水冷却对混凝土抗冲击性能影响试验研究 [J]. 工业建筑, 2017, 47(7): 127–131. DOI: 10.13204/j.gyjz201707024.

    ZHAI Yue, WANG Siwei, SHI Yunmei, et al. Research on effects of high temperature cooling method on concrete impact-resistance properties [J]. Industrial Construction, 2017, 47(7): 127–131. DOI: 10.13204/j.gyjz201707024.
    [21]
    邓红卫, 刘传举, 柯波, 等. 循环动力扰动下花岗岩细观损伤特性试验研究[J]. 工程科学学报, 2017, 39(11): 31-36. DOI: cnki:sun:bjkd.0.2017-11-004

    DENG Hongwei, LIU Chuanju, KE Bo, et al. Experimental study on microscopic damage characteristics of granite under cyclic dynamic disturbances[J]. Chinese Journal of Engineering, 2017, 39(11): 31-36. DOI: cnki:sun:bjkd.0.2017-11-004
    [22]
    孙中光, 姜德义, 谢凯楠, 等. 基于低场磁共振的北山花岗岩热损伤研究 [J/OL]. 煤炭学报. https://DOI.org/10.13225/j.cnki.jccs.2019.0164.

    SUN Zhongguang, JIANG Deyi, XIE Kainan, et al. Thermal damage study of Beishan granite based on low field magnetic resonance[J/OL]. Journal of China Coal Society. https://DOI.org/10.13225/j.cnki.jccs.2019.0164.
    [23]
    俞缙, 张欣, 蔡燕燕, 等. 水化学与冻融循环共同作用下砂岩细观损伤与力学性能劣化试验研究 [J]. 岩土力学, 2019, 40(2): 41–50. DOI: 10.16285/j.rsm.2017.1450.

    YU Jin, ZHANG Xin, CAI Yanyan, et al. Meso-damage and mechanical properties degradation of sandstone under combined effect of water chemical corrosion and freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(2): 41–50. DOI: 10.16285/j.rsm.2017.1450.
    [24]
    席道瑛. 花岗石中矿物相变的物性特征 [J]. 矿物学报, 1994(3): 223–227. DOI: 10.3321/j.issn:1000-4734.1994.03.003.

    XI Daoying. Physical characteristics of mineral phase transition in the granite [J]. Acta Mineralogica Sinica, 1994(3): 223–227. DOI: 10.3321/j.issn:1000-4734.1994.03.003.
    [25]
    唐世斌, 罗江, 唐春安. 低温诱发岩石破裂的理论与数值模拟研究 [J]. 岩石力学与工程学报, 2018, 39(7): 1596–1607. DOI: 10.13722/j.cnki.jrme.2018.0027.

    TANG Shibin, LUO Jiang, TANG Chun’an. Theoretical and numerical study on the cryogenic fracturing in rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 39(7): 1596–1607. DOI: 10.13722/j.cnki.jrme.2018.0027.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (5545) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return