Volume 40 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
LEI Jingfa, XU Meng, LIU Tao, XUAN Yan, SUN Hong, WEI Zhan. Static/dynamic mechanical properties and a constitutive model of a polyvinyl chloride elastomer[J]. Explosion And Shock Waves, 2020, 40(10): 103103. doi: 10.11883/bzycj-2019-0249
Citation: LEI Jingfa, XU Meng, LIU Tao, XUAN Yan, SUN Hong, WEI Zhan. Static/dynamic mechanical properties and a constitutive model of a polyvinyl chloride elastomer[J]. Explosion And Shock Waves, 2020, 40(10): 103103. doi: 10.11883/bzycj-2019-0249

Static/dynamic mechanical properties and a constitutive model of a polyvinyl chloride elastomer

doi: 10.11883/bzycj-2019-0249
  • Received Date: 2019-06-25
  • Rev Recd Date: 2020-07-29
  • Available Online: 2020-08-25
  • Publish Date: 2020-10-05
  • In order to reveal the mechanical properties of a polyvinyl chloride elastomer under static and dynamic loading, the stress-strain curves of the polyvinyl chloride elastomer at six different strain rates (0.001, 0.01, 0.1, 1 510, 2 260 and 3 000 s−1) were obtained by using a universal material testing machine and a modified split Hopkinson pressure bar experimental device. The shaping effects of the three shaper materials including copper, coated paper and plumbum were compared by using the yield strength as the optimized parameter of the shapers. It is difficult to obtain a unified parametric constitutive expression directly using the original ZWT nonlinear viscoelastic constitutive model, and the constitutive model is less efficient in describing the mechanical properties of the materials under static and dynamic loading. Therefore, the modified ZWT nonlinear viscoelastic constitutive model was used to describe the mechanical properties of the material under static and dynamic loading. The results show that the polyvinyl chloride elastomer has a strain-rate effect and significant hyperelastic properties under static load. It exhibits a more obvious strain-rate effect and strong resistance to deformation under dynamic loading, and the mechanical behaviors under static and dynamic loading are greatly affected by the strain histories. Coated paper has the best shaping effect among the three shaper materials. The modified ZWT nonlinear viscoelastic constitutive model can obtain constitutive expressions with uniform parameters, and the fitting results at various strain rates are in good agreement with the experimental results.
  • loading
  • [1]
    BERNARD C A, BAHLOULI N, WAGNER-KOCHER C, et al. Multiscale description and prediction of the thermomechanical behavior of multilayered plasticized PVC under a wide range of strain rate [J]. Journal of Materials Science, 2018, 53(20): 14834–14849. DOI: 10.1007/s10853-018-2625-5.
    [2]
    JHA N K, NACKENHORST U, PAWAR V S, et al. On the constitutive modelling of fatigue damage in rubber-like materials [J]. International Journal of Solids and Structures, 2019, 159: 77–89. DOI: 10.1016/j.ijsolstr.2018.09.022.
    [3]
    KIDD T H, ZHUANG S, RAVICHANDRAN G. In situ mechanical characterization during deformation of PVC polymeric foams using ultrasonics and digital image correlation [J]. Mechanics of Materials, 2012, 55: 82–88. DOI: 10.1016/j.mechmat.2012.08.001.
    [4]
    刘高冲, 金涛, 陈圣家, 等. 聚氨酯弹性体静动态加载条件下力学性能的研究 [J]. 材料导报, 2017, 31(S1): 315–318.

    LIU G C, JIN T, CHEN S J, et al. Study on mechanical properties of polyurethane elastomer under static/dynamic loading conditions [J]. Materials Review, 2017, 31(S1): 315–318.
    [5]
    王宝珍, 胡时胜. 猪后腿肌肉的冲击压缩特性实验 [J]. 爆炸与冲击, 2010, 30(1): 33–38. DOI: 10.11883/1001-1455(2010)01-0033-06.

    WANG B Z, HU S S. Dynamic compression experiments of porcine ham muscle [J]. Explosion and Shock Waves, 2010, 30(1): 33–38. DOI: 10.11883/1001-1455(2010)01-0033-06.
    [6]
    王宝珍, 胡时胜. 猪肝动态力学性能及本构模型研究 [J]. 力学学报, 2017, 49(6): 1399–1408. DOI: 10.6052/0459-1879-17-238.

    WANG B Z, HU S S. Research on dynamic mechanical response and constitutive model of porcine liver [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1399–1408. DOI: 10.6052/0459-1879-17-238.
    [7]
    SONG B, CHEN W N, GE Y, et al. Dynamic and quasi-static compressive response of porcine muscle [J]. Journal of Biomechanics, 2007, 40(13): 2999–3005. DOI: 10.1016/j.jbiomech.2007.02.001.
    [8]
    NAIK N K, SHANKAR P J, KAVALA V R, et al. High strain rate mechanical behavior of epoxy under compressive loading: experimental and modeling studies [J]. Materials Science and Engineering: A, 2011, 528(3): 846–854. DOI: 10.1016/j.msea.2010.10.099.
    [9]
    SNEDEKER J G, NIEDERER P, SCHMIDLIN F R, et al. Strain-rate dependent material properties of the porcine and human kidney capsule [J]. Journal of Biomechanics, 2005, 38(5): 1011–1021. DOI: 10.1016/j.jbiomech.2004.05.036.
    [10]
    马赛尔, 许进升, 童心, 等. 高密度聚乙烯单轴拉伸力学性能及本构关系研究 [J]. 中国塑料, 2016, 30(4): 88–92. DOI: 10.19491/j.issn.1001-9278.2016.04.015.

    MA S E, XU J S, TONG X, et al. Research on uniaxially tensile mechanical properties and constitutive model of high density polyethylene [J]. China Plastics, 2016, 30(4): 88–92. DOI: 10.19491/j.issn.1001-9278.2016.04.015.
    [11]
    GUO H, GUO W G, AMIRKHIZI A V, et al. Experimental investigation and modeling of mechanical behaviors of polyurea over wide ranges of strain rates and temperatures [J]. Polymer Testing, 2016, 53: 234–244. DOI: 10.1016/j.polymertesting.2016.06.004.
    [12]
    JIANG J, XU J S, ZHANG Z S, et al. Rate-dependent compressive behavior of EPDM insulation: experimental and constitutive analysis [J]. Mechanics of Materials, 2016, 96: 30–38. DOI: 10.1016/j.mechmat.2016.02.003.
    [13]
    孙紫建, 王礼立. 高应变率大变形下的聚丙烯/尼龙共混高聚物损伤型本构特性 [J]. 爆炸与冲击, 2006, 26(6): 492–497. DOI: 10.11883/1001-1455(2006)06-0492-06.

    SUN Z J, WANG L L. The constitutive behavior of PP/PA polymer blends taking account of damage evolution at high strain rate and large deformation [J]. Explosion and Shock Waves, 2006, 26(6): 492–497. DOI: 10.11883/1001-1455(2006)06-0492-06.
    [14]
    XU X, GAO S Q, ZHANG D M, et al. Mechanical behavior of liquid nitrile rubber-modified epoxy resin: experiments, constitutive model and application [J]. International Journal of Mechanical Sciences, 2019, 151: 46–60. DOI: 10.1016/j.ijmecsci.2018.11.003.
    [15]
    LIU K, WU Z L, REN H L, et al. Strain rate sensitive compressive response of gelatine: experimental and constitutive analysis [J]. Polymer Testing, 2017, 64: 254–266. DOI: 10.1016/j.polymertesting.2017.09.008.
    [16]
    周海霞, 李世鹏, 谢侃, 等. HTPB推进剂宽泛应变率下黏弹性本构模型研究 [J]. 固体火箭技术, 2017, 40(3): 325–329, 396. DOI: 10.7673/j.issn.1006-2793.2017.03.010.

    ZHOU H X, LI S P, XIE K, et al. Research on the viscoelastic constitutive model of HTPB propellant over a wide range of strain rates [J]. Journal of Solid Rocket Technology, 2017, 40(3): 325–329, 396. DOI: 10.7673/j.issn.1006-2793.2017.03.010.
    [17]
    卢芳云, CHEN W, FREW D J. 软材料的SHPB实验设计 [J]. 爆炸与冲击, 2002, 22(1): 15–19.

    LU F Y, CHEN W, FREW D J. A design of SHPB experiments for soft materials [J]. Explosion and Shock Waves, 2002, 22(1): 15–19.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (3927) PDF downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return