ZHANG En, LU Guoyun, YANG Huiwei, CAO Ruidong, CHEN Pengcheng. Band gap features of metaconcrete and shock wave attenuation in it[J]. Explosion And Shock Waves, 2020, 40(6): 063301. doi: 10.11883/bzycj-2019-0252
Citation: ZHANG En, LU Guoyun, YANG Huiwei, CAO Ruidong, CHEN Pengcheng. Band gap features of metaconcrete and shock wave attenuation in it[J]. Explosion And Shock Waves, 2020, 40(6): 063301. doi: 10.11883/bzycj-2019-0252

Band gap features of metaconcrete and shock wave attenuation in it

doi: 10.11883/bzycj-2019-0252
  • Received Date: 2019-06-25
  • Rev Recd Date: 2020-04-26
  • Available Online: 2020-05-25
  • Publish Date: 2020-06-01
  • Based on the research ideas of metamaterials, a novel concrete with wave-absorbing features was designed by introducing local resonant aggregates into plain concrete. First, the effective mass of the designed metaconcrete was calculated by means of structural dynamics. Simplified models for the start and cutoff frequencies of the band gap in the metaconcrete were established, and the theoretical expressions for the band gap start and cutoff frequencies were proposed. The effects of the following parameters on the band gap features of the metaconcrete were analyzed by the proposed theoretical models, including the coating elastic modulus, core density, matrix density, aggregate volume ratio, and ratio of core length to soft thickness. Finally, the numerical simulations were carried out to compare the attenuation effects of shock waves in the metaconcrete to those in the plain concrete. The research results reveal that the flexible coating results in a low-frequency attenuation domain, but the width of the attenuation domain is narrow; while the high elastic modulus coating can form a wider attenuation domain, but the attenuation domain has a higher start frequency. A low frequency and wide band gap can be obtained by selecting large-density core material and small-density matrix material. A wide band gap can be achieved by increasing the proportion of aggregate volume and the ratio of core length to soft thickness. Compared with the plain concrete, the metaconcrete has a better attenuation effect on shock wave.
  • [1]
    WEGENER M. Metamaterials beyond optics [J]. Science, 2013, 342(6161): 939–940. DOI: 10.1126/science.1246545.
    [2]
    LANDY N, SMITH D R. A full-parameter unidirectional metamaterial cloak for microwaves [J]. Nature Materials, 2013, 12(1): 25–28. DOI: 10.1038/nmat3476.
    [3]
    LI B, TAN K T, CHRISTENSEN J. Heat conduction tuning by hyperbranched nanophononic metamaterials [J]. Journal of Applied Physics, 2018, 123(20): 205105. DOI: 10.1063/1.5023487.
    [4]
    LI B, TAN K T, CHRISTENSEN J. Tailoring the thermal conductivity in nanophononic metamaterials [J]. Physical Review B, 2017, 95(14): 144305. DOI: 10.1103/PhysRevB.95.144305.
    [5]
    WANG Y Z, LI F M, WANG Y S. Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain [J]. International Journal of Mechanical Sciences, 2016, 106: 357–362. DOI: 10.1016/j.ijmecsci.2015.12.004.
    [6]
    BANERJEE B, NAGY P B. An introduction to metamaterials and waves in composites [J]. Journal of the Acoustical Society of America, 2012, 131(2): 1665. DOI: 10.1121/1.3672699.
    [7]
    AL BA'BA'A H B, NOUH M. Mechanics of longitudinal and flexural locally resonant elastic metamaterials using a structural power flow approach [J]. International Journal of Mechanical Sciences, 2017, 122: 341–354. DOI: 10.1016/j.ijmecsci.2017.01.034.
    [8]
    LIU X N, HU G K, HUANG G L, et al. An elastic metamaterial with simultaneously negative mass density and bulk modulus [J]. Applied Physics Letters, 2011, 98(25): 251907. DOI: 10.1063/1.3597651.
    [9]
    LI J, CHAN C T. Double-negative acoustic metamaterial [J]. Physical Review E, 2004, 70(5): 055602(R). DOI: 10.1103/PhysRevE.70.055602.
    [10]
    LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials [J]. Science, 2000, 289(5485): 1734–1736. DOI: 10.1126/science.289.5485.1734.
    [11]
    LIU Z Y, CHAN C T, SHENG P, et al. Elastic wave scattering by periodic structures of spherical objects: theory and experiment [J]. Physical Review B, 2000, 62(4): 2446–2457. DOI: 10.1103/PhysRevB.62.2446.
    [12]
    LIU Z Y, CHAN C T, SHENG P. Three-component elastic wave band-gap material [J]. Physical Review B, 2002, 65(16): 165116. DOI: 10.1103/PhysRevB.65.165116.
    [13]
    LIU Z Y, CHAN C T, SHENG P. Analytic model of phononic crystals with local resonances [J]. Physical Review B, 2005, 71(1): 014103. DOI: 10.1103/PhysRevB.71.014103.
    [14]
    YANG Z, DAI H M, CHAN N H, et al. Acoustic metamaterial panels for sound attenuation in the 50−1 000 Hz regime [J]. Applied Physics Letters, 2010, 96(4): 041906. DOI: 10.1063/1.3299007.
    [15]
    YANG Z, MEI J, YANG M, et al. Membrane-type acoustic metamaterial with negative dynamic mass [J]. Physical Review Letters, 2008, 101(20): 204301. DOI: 10.1103/PhysRevLett.101.204301.
    [16]
    吴健, 白晓春, 肖勇, 等. 一种多频局域共振型声子晶体板的低频带隙与减振特性 [J]. 物理学报, 2016, 65(6): 064602. DOI: 10.7498/aps.65.064602.

    WU J, BAI X C, XIAO Y, et al. Low frequency band gaps and vibration reduction properties of a multi-frequency locally resonant phononic plate [J]. Acta Physica Sinica, 2016, 65(6): 064602. DOI: 10.7498/aps.65.064602.
    [17]
    张印, 尹剑飞, 温激鸿, 等. 基于质量放大局域共振型声子晶体的低频减振设计 [J]. 振动与冲击, 2016, 35(17): 26–32. DOI: 10.13465/j.cnki.jvs.2016.17.005.

    ZHANG Y, YIN J F, WEN J H, et al. Low frequency vibration reduction design for inertial local resonance phononic crystals based on inertial amplification [J]. Journal of Vibration and Shock, 2016, 35(17): 26–32. DOI: 10.13465/j.cnki.jvs.2016.17.005.
    [18]
    BRÛLÉ S, JAVELAUD E H, ENOCH S, et al. Experiments on seismic metamaterials: molding surface waves [J]. Physical Review Letters, 2014, 112(13): 133901. DOI: 10.1103/PhysRevLett.112.133901.
    [19]
    郜英杰, 范华林, 张蓓, 等. 超材料消波混凝土板在二维平面波作用下的削波效应研究 [J]. 振动与冲击, 2018, 37(20): 39–44. DOI: 10.13465/j.cnki.jvs.2016.17.005.

    GAO Y J, FAN H L, ZHANG B, et al. Wave attenuation of super-material wave absorbing concrete panel subjected to two-dimensional plane wave [J]. Journal of Vibration and Shock, 2018, 37(20): 39–44. DOI: 10.13465/j.cnki.jvs.2016.17.005.
    [20]
    LI Q Q, HE Z C, LI E, et al. Design of a multi-resonator metamaterial for mitigating impact force [J]. Journal of Applied Physics, 2019, 125(3): 035104. DOI: 10.1063/1.5029946.
    [21]
    HUANG H H, SUN C T, HUANG G L. On the negative effective mass density in acoustic metamaterials [J]. International Journal of Engineering Science, 2009, 47(4): 610–617. DOI: 10.1016/j.ijengsci.2008.12.007.
    [22]
    SHENG X, ZHAO C Y, YI Q, et al. Engineered metabarrier as shield from longitudinal waves: band gap properties and optimization mechanisms [J]. Journal of Zhejiang University: Science A: Applied Physics and Engineering, 2018, 19(9): 663–675. DOI: 10.1631/jzus.A1700192.
    [23]
    MITCHELL S J, PANDOLFI A, ORTIZ M. Metaconcrete: designed aggregates to enhance dynamic performance [J]. Journal of the Mechanics and Physics of Solids, 2014, 65: 69–81. DOI: 10.1016/j.jmps.2014.01.003.
  • Cited by

    Periodical cited type(5)

    1. 熊剑荣,任凤鸣,田时雨,黎永盛. 超材料混凝土减振性能研究现状与展望. 复合材料学报. 2024(02): 656-671 .
    2. 姚未来,刘元雪,孙涛,赵宏刚,穆锐,雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望. 材料导报. 2024(05): 5-18 .
    3. 肖鹏,缪林昌,郑海忠,雷利剑. 拟声子晶体超材料混凝土的低频带隙特性与工程应用. 中国科学:技术科学. 2024(09): 1821-1836 .
    4. 肖鹏,缪林昌,郑海忠,雷利剑. 一种新型二维三组元水泥基拟声子晶体复合材料的低频带隙特性与应用. 复合材料学报. 2024(10): 5607-5621 .
    5. 李国强,马钢,高松涛,郭栋才,张佳寅. 冲击荷载作用下滤波混凝土的动态响应与层裂损伤数值研究. 爆炸与冲击. 2023(02): 47-61 . 本站查看

    Other cited types(4)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (5835) PDF downloads(126) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return