Volume 40 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
WANG Zhuangzhuang, XU Peng, FAN Zhiqiang, MIAO Yuzhong, GAO Yubo, NIE Taoyi. Study on static and dynamic mechanical properties and fracture mechanism of cenospheres[J]. Explosion And Shock Waves, 2020, 40(6): 063101. doi: 10.11883/bzycj-2019-0337
Citation: WANG Zhuangzhuang, XU Peng, FAN Zhiqiang, MIAO Yuzhong, GAO Yubo, NIE Taoyi. Study on static and dynamic mechanical properties and fracture mechanism of cenospheres[J]. Explosion And Shock Waves, 2020, 40(6): 063101. doi: 10.11883/bzycj-2019-0337

Study on static and dynamic mechanical properties and fracture mechanism of cenospheres

doi: 10.11883/bzycj-2019-0337
  • Received Date: 2019-08-30
  • Rev Recd Date: 2020-03-03
  • Available Online: 2020-05-25
  • Publish Date: 2020-06-01
  • To investigate the mechanical properties of brittle hollow particles (BHPs) under impact loading, Quasi-static and dynamic compressive tests were conducted on fly ash cenospheres (CPs) with two different particle size graduations. The breakage rate and fracture mechanism of the cenospheres and their effects on the strain rate sensitivity of the cenospheres accumulation were discussed based on the single loading experiments, which were implemented by limiting the compression strain of the particles accumulation to 50%. The results are as follows. (1) The dynamic strength of cenosphere materials was significantly enhanced as compared to the quasi-static compression results. In the strain rate range of 0.001-150 s−1, the strength of the cenosphere accumulations with large and small average particle sizes (marked LGs and LTs) increased by 200% and 195%, respectively. The strength of LGs and LTs increased 39% and 51.5% with the strain rate increased from 150 s−1 to 300 s−1. However, when the strain rate increased to 800 s−1, no obvious change on the strength of both LGs and LTs were observed. (2) At the same loading rate, the strength and energy absorption of particle accumulation with smaller average size were35%~40% and 35%~48% higher than that containing larger particles. (3) According to the particle fragments size distribution analysis, the broken rate of the particle accumulation and the broken severity of single particle both increased with the loading rate. In addition, the broken rate of LGs was higher than that of LTs at the same loading rate. (4) Based on Hardin fracture potential analysis, it can be concluded that the relative breaking potential of particles decreases with the increase of impact velocity under unit input energy, and the energy utilization rate for particle breaking decreases under dynamic impact, which leads to higher energy dissipation and stress level of materials under the same compression amount, namely, the macroscopic strain rate effect.
  • loading
  • [1]
    WANG Y, MA T H, ZHU J J. Analysis on cushion performance of quartz sand in high-g shock [J]. Computer Modelling & New Technologies, 2014, 18(12D): 367–370.
    [2]
    LING Y F, ZHANG Q, ZHANG F Y, et al. Microstructure and strength correlation of pure Al and Al-Mg syntactic foam composites subject to uniaxial compression [J]. Materials Science and Engineering: A, 2017, 696: 236–247. DOI: 10.1016/j.msea.2017.04.060.
    [3]
    FAN Z Q, MIAO Y Z, WANG Z Z, et al. Effect of the cenospheres size and internally lateral constraints on dynamic compressive behavior of fly ash cenospheres polyurethane syntactic foams [J]. Composites Part B: Engineering, 2019, 171: 329–338. DOI: 10.1016/j.compositesb.2019.05.008.
    [4]
    BRAGOV A M, LOMUNOV A K, SERGEICHEV I V, et al. Determination of physicomechanical properties of soft soils from medium to high strain rates [J]. International Journal of Impact Engineering, 2008, 35(9): 967–976. DOI: 10.1016/j.ijimpeng.2007.07.004.
    [5]
    SONG B, CHEN W N, LUK V. Impact compressive response of dry sand [J]. Mechanics of Materials, 2009, 41(6): 777–785. DOI: 10.1016/j.mechmat.2009.01.003.
    [6]
    FARR J V. One-dimensional loading-rate effects [J]. Journal of Geotechnical Engineering, 1990, 116(1): 119–135. DOI: 10.1061/(ASCE)0733-9410(1990)116:1(119).
    [7]
    YAMAMURO J A, ABRANTES A E, LADE P V. Effect of strain rate on the stress-strain behavior of sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(12): 1169–1178. DOI: 10.1061/(ASCE)GT.1943-5606.0000542.
    [8]
    HUANG J Y, XU S L, HU S S. Influence of particle breakage on the dynamic compression responses of brittle granular materials [J]. Mechanics of Materials, 2014, 68: 15–28. DOI: 10.1016/j.mechmat.2013.08.002.
    [9]
    HUANG J, XU S, HU S. Effects of grain size and gradation on the dynamic responses of quartz sands [J]. International Journal of Impact Engineering, 2013, 59: 1–10. DOI: 10.1016/j.ijimpeng.2013.03.007.
    [10]
    HUANG J Y, LU L, FAN D, et al. Heterogeneity in deformation of granular ceramics under dynamic loading [J]. Scripta Materialia, 2016, 111: 114–118. DOI: 10.1016/j.scriptamat.2015.08.028.
    [11]
    MONDAL D P, JHA N, GULL B, et al. Microarchitecture and compressive deformation behaviour of Al-alloy (LM13)-cenosphere hybrid Al-foam prepared using CaCO3 as foaming agent [J]. Materials Science and Engineering: A, 2013, 560: 601–610. DOI: 10.1016/j.msea.2012.10.003.
    [12]
    LADE P V, YAMAMURO J A, BOPP P A. Significance of particle crushing in granular materials [J]. Journal of Geotechnical Engineering, 1996, 122(4): 309–316. DOI: 10.1061/(ASCE)0733-9410(1996)122:4(309).
    [13]
    LIU H Y, KOU S Q, LINDQVIST P A. Numerical studies on the inter-particle breakage of a confined particle assembly in rock crushing [J]. Mechanics of Materials, 2005, 37(9): 935–954. DOI: 10.1016/j.mechmat.2004.10.002.
    [14]
    倪素环, 陈青果, 侯书军. 颗粒层受压破碎过程的试验研究 [J]. 金属矿山, 2011(1): 109–111, 127.

    NI S H, CHEN Q G, HOU S J. Experimental research on compression crushing process of granular layer [J]. Metal Mine, 2011(1): 109–111, 127.
    [15]
    HARDIN B O. Crushing of soil particles [J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177–1192. DOI: 10.1061/(ASCE)0733-9410(1985)111:10(1177).
    [16]
    池昌江. 准脆性颗粒材料的受压渐进破碎机制研究[D]. 北京: 清华大学, 2015.
    [17]
    黄俊宇. 冲击载荷下脆性颗粒材料多尺度变形破碎特性研究[D]. 合肥: 中国科学技术大学, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (5060) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return